
An Introduction to Reinforcement Learning

Alexander Cai

2025-03-28



Table of contents

Preface 3
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Course overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Notation 5

1 Introduction 7
1.1 Core tasks of reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Challenges of reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 9

2 Markov Decision Processes 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Introduction to Markov decision processes . . . . . . . . . . . . . . . . . . . . . 11
2.3 Finite-horizon Markov decision processes . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Infinite-horizon Markov decision processes . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Differences from the finite horizon setting . . . . . . . . . . . . . . . . . 28
2.4.2 Contraction mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 39

3 Linear Quadratic Regulators 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 A first attempt: Discretization . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The Linear Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Optimality and the Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Expected state at time ℎ . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Time-dependent dynamics and cost function . . . . . . . . . . . . . . . 51
3.5.2 More general quadratic cost functions . . . . . . . . . . . . . . . . . . . 52

2



3.5.3 Tracking a predefined trajectory . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Approximating nonlinear dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Local linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2 Finite differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.3 Local convexification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.4 Iterative LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 58

4 Multi-Armed Bandits 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 The multi-armed bandit problem . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Pure exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Pure greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Explore-then-commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Epsilon-greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Upper Confidence Bound (UCB) . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.1 Lower bound on regret (intuition) . . . . . . . . . . . . . . . . . . . . . 75
4.8 Thompson sampling and Bayesian bandits . . . . . . . . . . . . . . . . . . . . . 75
4.9 Contextual bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9.1 Linear contextual bandits . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.10 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.11 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 82

5 Supervised learning 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 The supervised learning task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Empirical risk minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Function classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Parameterized function classes . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Examples of parameterized function classes . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 92

6 Fitted Dynamic Programming Algorithms 94
6.1 Fitted policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Offline fitted policy evaluation . . . . . . . . . . . . . . . . . . . . . . . 96

3



6.1.2 Bootstrapping and target networks . . . . . . . . . . . . . . . . . . . . . 98
6.1.3 Online fitted policy evaluation . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Fitted value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.1 Offline fitted value iteration . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Fitted policy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 104

7 Policy Gradient Methods 106
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Parameterized policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.1 Computing derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.2 Stochastic gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Policy (stochastic) gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.1 Introduction to policy gradient methods . . . . . . . . . . . . . . . . . . 115
7.4.2 The REINFORCE policy gradient . . . . . . . . . . . . . . . . . . . . . 118
7.4.3 Baselines and advantages . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Comparing policy gradient algorithms to policy iteration . . . . . . . . . . . . . 126
7.6 Trust region policy optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.7 Natural policy gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.8 Penalty-based proximal policy optimization . . . . . . . . . . . . . . . . . . . . 137
7.9 Advantage clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.10 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.11 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 141

8 Imitation Learning 143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Behaviour cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 Distribution shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4 Dataset aggregation (DAgger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.5 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.6 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 148

9 Tree Search Methods 150
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.2 Deterministic, zero sum, fully observable two-player games . . . . . . . . . . . . 150

9.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3 Min-max search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3.1 Complexity of min-max search . . . . . . . . . . . . . . . . . . . . . . . 156
9.4 Alpha-beta pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4



9.5 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.5.1 Incorporating value functions and policies . . . . . . . . . . . . . . . . . 163
9.5.2 Self-play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.6 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.7 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 166

10 Exploration in MDPs 167
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1.1 Sparse reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.1.2 Reward shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.2 Exploration in deterministic MDPs . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.3 Treating an unknown MDP as a MAB . . . . . . . . . . . . . . . . . . . . . . . 171
10.4 Upper confidence bound value iteration . . . . . . . . . . . . . . . . . . . . . . 172

10.4.1 Modeling the transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.4.2 Reward bonus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.4.3 Performance of UCBVI . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.5 Linear MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.5.1 Planning in a linear MDP . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.5.2 UCBVI in a linear MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.6 Key takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.7 Bibliographic notes and further reading . . . . . . . . . . . . . . . . . . . . . . 179

References 181

Appendices 191

A Background 191
A.1 O notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.2 Union bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B Proofs 193
B.1 LQR proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.2 UCBVI reward bonus proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5



Preface

Welcome to the study of reinforcement learning! This textbook accompanies the undergraduate
course CS 1840/STAT 184 taught at Harvard. It is intended to be an approachable yet rigorous
introduction to this active subfield of machine learning.

Prerequisites

This book assumes the same prerequisites as the course: You should be familiar with multivari-
able calculus, linear algebra, and probability. For Harvard undergraduates, this is fulfilled by
Math 21a, Math 21b, and Stat 110, or their equivalents. Stat 111 is strongly recommended but
not required. Specifically, we will assume that you know the following topics. The italicized
terms have brief re-introductions in the text:

• Linear Algebra: Vectors and matrices, matrix multiplication, matrix inversion, eigen-
values and eigenvectors.

• Multivariable Calculus: Partial derivatives, the chain rule, Taylor series, gradients,
directional derivatives, Lagrange multipliers.

• Probability: Random variables, probability distributions, expectation and variance, the
law of iterated expectations (Adam’s rule), covariance, conditional probability, Bayes’s
rule, and the law of total probability.

You should also be familiar with basic programming concepts such as variables, functions,
loops, etc. Pseudocode listings will be provided for certain algorithms.

Course overview

The course will progress through the following units:

Chapter 1 presents motivation for the RL problem and compares RL to other fields of machine
learning.

Chapter 2 introduces Markov Decision Processes, the core mathematical framework for
describing a large class of interactive environments.
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Chapter 3 is a standalone chapter on the linear quadratic regulator (LQR), an important
tool for continuous control, in which the state and action spaces are no longer finite but rather
continuous. This has widespread applications in robotics.

Chapter 4 introduces the multi-armed bandit (MAB) model for stateless sequential decision-
making tasks. In exploring a number of algorithms, we will see how each of them strikes a differ-
ent balance between exploring new options and exploiting known options. This exploration-
exploitation tradeoff is a core consideration in RL algorithm design.

Chapter 5 is a standalone crash course on some tools from supervised learning that we will
use in later chapters.

Chapter 6 introduces fitted dynamic programming (fitted DP) algorithms for solving
MDPs. These algorithms use supervised learning to approximately evaluate policies when
they cannot be evaluated exactly.

Chapter 7 explores an important class of algorithms based on iteratively improving a policy.
We will also encounter the use of deep neural networks to express nonlinear policies and
approximate nonlinear functions with many inputs and outputs.

Chapter 8 attempts to learn a good policy from expert demonstrations. At its most basic, this
is an application of supervised learning to RL tasks.

Chapter 9 looks at ways to explicitly plan ahead when the environment’s dynamics are known.
We will study the Monte Carlo Tree Search heuristic, which has been used to great success in
the famous AlphaGo algorithm and its successors.

Chapter 10 continues to investigate the exploration-exploitation tradeoff. We will extend ideas
from multi-armed bandits to the MDP setting.

Appendix A contains an overview of selected background mathematical content and program-
ming content.
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Notation

It’s worth it to spend a few words discussing the notation used for reinforcement learning. RL
notation can appear quite complicated, since we often need to index across algorithm iterations,
trajectories, and timesteps, so that certain values can have two or three indices attached to
them. It’s important to see beyond the formal notation and interpret the quantities being
symbolized.

We will use the following notation throughout the book. This notation is inspired by Sutton &
Barto (2018) and A. Agarwal et al. (2022). We use [𝑁] as shorthand for the set {0, 1, … , 𝑁 −
1}. We try to use each lowercase letter to represent an element of the set denoted by the
corresponding (stylized) uppercase letter. We use △(𝒳) to denote a distribution supported
on some subset of 𝒳. (The triangle is used to evoke the probability simplex.)

Table 1: Table of integer indices.

Index Range Definition (of index)
ℎ [𝐻] Time horizon index of an MDP (subscript).
𝑘 [𝐾] Arm index of a multi-armed bandit (superscript).
𝑡 [𝑇 ] Number of episodes.
𝑖 [𝐼] Iteration index of an algorithm (subscript or superscript).

Table 2: Table of common notation.

Element Space Definition (of element)
𝑠 𝒮 A state.
𝑎 𝒜 An action.
𝑟 ℝ A reward.
𝛾 [0, 1] A discount factor.
𝜏 𝒯 A trajectory (𝑠0, 𝑎0, 𝑟0, … , 𝑠𝐻−1, 𝑎𝐻−1, 𝑟𝐻−1)
𝜋 Π A policy.

𝑉 𝜋 𝒮 → ℝ The value function of policy 𝜋.
𝑄𝜋 𝒮 × 𝒜 → ℝ The action-value function (a.k.a. Q-function)

of policy 𝜋.
𝐴𝜋 𝒮 × 𝒜 → ℝ The advantage function of policy 𝜋.
𝑣 𝒮 → ℝ An approximation to the value function.
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Element Space Definition (of element)
𝑞 𝒮 × 𝒜 → ℝ An approximation to the Q function.
𝜃 Θ A parameter vector.

Note that throughout the text, certain symbols will stand for either random variables or fixed
values. We aim to clarify in ambiguous settings.
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1 Introduction

Reinforcement learning (RL) is a branch of machine learning that studies sequential
decision-making in unknown environments. An RL algorithm finds a strategy, called a
policy, that maximizes the reward it obtains from the environment.

RL provides a powerful framework for attacking a wide variety of problems, including robotic
control, video games and board games, resource management, language modeling, and more. It
also provides an interdisciplinary paradigm for studying animal and human behaviour. Many
of the most stunning results in machine learning, ranging from AlphaGo (Silver et al., 2016)
to ChatGPT (OpenAI, 2022), are built using RL algorithms.

How does RL compare to the other two core machine learning paradigms, supervised learn-
ing and unsupervised learning?

• Supervised learning (SL) concerns itself with learning a mapping from inputs to out-
puts. Typically the data takes the form of statistically independent input-output pairs.
In RL, however, the data is generated by the agent interacting with the environment,
meaning the sequential observations of the state are not independent from each other.
SL is a well-studied field that provides many useful tools for RL.

• Unsupervised learning concerns itself with learning the structure of data without the
use of outside feedback or labels. In RL, though, the agent receives a reward signal
from the environment, which can be thought of as a sort of feedback. Unsupervised
learning is crucial in many real-world applications of RL for dimensionality reduction.

The key difference is that RL algorithms don’t learn from some existing dataset; rather, they
must go out and interact with the environment to collect their own data in an online way. This
means RL algorithms face a distinct set of challenges from other kinds of machine learning.
We’ll discuss these more concretely in sec. 1.2.

Remark 1.1 (The reward hypothesis). Why do we only focus on maximizing a scalar reward
signal? Surely a more descriptive or higher-dimensional signal would enable more efficient
learning. Nonetheless, many (prominent) researchers hold that scalar reward is enough
for developing behaviours that achieve a wide array of goals (Silver et al., 2021). This idea is
also termed the reward hypothesis, and goes back at least as far as Turing, who suggested
that one could train a “universal machine” using one input signal for “pain” and another
for “pleasure” (Turing, 1948). Reinforcement learning takes this hypothesis seriously. It is
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undeniable that maximizing scalar rewards has led to success in an assortment of sequential
decision-making problems.

1.1 Core tasks of reinforcement learning

What tasks, exactly, are important for RL? Typically,

• Policy evaluation (prediction): How ‘good’ is a specific state, or state-action pair
(under a given policy)? That is, how much reward does it lead to in the long run? This
is also called the task of value estimation.

• Policy optimization (control): Suppose we fully understand how the environment
behaves. What is the best action to take in every scenario?

1.2 Challenges of reinforcement learning

Recursion (bootstrapping): how can we “reuse” our current predictions to generate new
information?

Exploration-exploitation tradeoff: should we try new actions, or capitalize on actions that
we currently believe to be good?

Credit assignment: Consider this example: some mornings, you may wake up well rested,
while other mornings, you may wake up drowsy and tired, even if the amount of time you
spent asleep stays the same. What could be the cause? You take so many actions throughout
the day, and any one of them could be the reason for your good or poor sleep. Was it a
skipped meal? A lack of exercise? When these consequences interact with each other, it can
be challenging to properly assign credit to the actions that cause the observed effects.

Reproducibility: the high variance inherent in interacting with the environment means that
the results of RL experiments can be challenging to reproduce. Even when averaging across
multiple random seeds, the same algorithm can achieve drastically different-seeming results
(R. Agarwal et al., 2021).

1.3 Programming

Why include code in a textbook? We believe that implementing an algorithm is a strong test
of your understanding of it; mathematical notation can often abstract away details, while a
computer must be given every single instruction. We have sought to write readable Python
code that is self-contained within each file. This approach is inspired by Sussman et al. (2013).
There are some ways in which the code style differs from typical software projects:
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• We keep use of language features to a minimum, even if it leads to code that could
otherwise be more concisely or idiomatically expressed.

• The variable names used in the code match those used in the main text. For example,
the variable s will be used instead of the more explicit state.

We also make extensive use of Python type annotations to explicitly specify variable types,
including shapes of vectors and matrices using the jaxtyping library.

This is an interactive book built with Quarto (Allaire et al., 2024). It uses Python 3.11. It
uses the JAX library for numerical computing. JAX was chosen for the clarity of its functional
style and due to its mature RL ecosystem, sustained in large part by the Google DeepMind
research group and a large body of open-source contributors. We use the standard Gymnasium
library for interfacing with RL environments.

1.4 Bibliographic notes and further reading

Interest has surged in RL in the past decades, especially since AlphaGo’s groundbreaking
success (Silver et al., 2016). There are a number of recent textbooks that cover the field of
RL:

Schultz et al. (1997) highlights RL as a normative theory for neuroscientific behaviour.
Thorndike (1911) puts RL forward as a learning framework for animal behaviours.

Sutton & Barto (2018) set the framework for much of modern RL. Plaat (2022) is a graduate-
level textbook on deep reinforcement learning. A. Agarwal et al. (2022) is a useful reference for
theoretical guarantees of RL algorithms. S. E. Li (2023) highlights the connections between RL
and optimal control. Mannor et al. (2024) is another advanced undergraduate course textbook.
Bertsekas & Tsitsiklis (1996) introduced many of the core concepts of RL. Szepesvári (2010)
is an invaluable resource on much of the theory underlying the methods in this book and
elsewhere. Kochenderfer et al. (2022) provides a more probabilistic perspective alongside
Julia code for various RL algorithms.

There are also a number of review articles that summarize recent advances. Murphy (2025)
gives an overview of the past decade of advancements in RL. Ivanov & D’yakonov (2019) lists
many popular algorithms.

Other textbooks focus on specific RL techniques or on applications of RL to specific fields.
Albrecht et al. (2023) discusses multi-agent reinforcement learning. Rao & Jelvis (2022)
focuses on applications of RL to finance. Y. Li (2018) surveys applications of RL to various
fields.

12

https://github.com/patrick-kidger/jaxtyping
https://docs.python.org/3.11/contents.html
https://jax.readthedocs.io/en/latest/index.html
https://gymnasium.farama.org/


2 Markov Decision Processes

2.1 Introduction

Machine learning studies algorithms that learn to solve a task “on their own”, without
needing a programmer to implement handwritten “if statements”. Reinforcement learning
(RL) is a branch of machine learning that focuses on decision problems like the following:

Example 2.1 (Decision problems).

(a) Board games and video games,
such as a game of chess, where
a player character takes ac-
tions that update the state of
the game (Guy, 2006).

(a) Inventory management, where
a company must efficiently
move resources from produc-
ers to consumers (Frans Berke-
laar, 2009).

(a) Robotic control, where a
robot can move and interact
with the real world to com-
plete some task (GPA Photo
Archive, 2017).

All of these tasks involve taking a sequence of actions in order to achieve some goal. This
interaction loop can be summarized in the following diagram:

In this chapter, we’ll investigate the most popular mathematical formalization for such tasks:
Markov decision processes (MDPs). We will study dynamic programming (DP)
algorithms for solving tasks when the rules of the environment are totally known. We’ll
describe how to evaluate different policies and how to compute (or approximate) the optimal
policy for a given MDP. We’ll introduce the Bellman consistency condition, which allows
us to analyze the whole sequence of interactions in terms of individual timesteps.

Remark 2.1 (Further generalizations). In most real tasks, we don’t explicitly know the rules
of the environment, or can’t concisely represent them on a computer. We will deal with this
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Figure 2.4: The RL interaction loop. The agent chooses an action that affects the environment.
The environment updates according to the state transitions. Then the agent
observes the updated environment and a reward signal that describes progress
made towards the goal.

in future chapters; this chapter assumes the environment is known and accessible, so there’s
nothing to learn about the environment.

Additionally, in many tasks, only a subset of the state is visible to the observer. Such partially
observed environments are out of scope of this textbook; see sec. 2.6 for additional resources.

2.2 Introduction to Markov decision processes

To gain a better grasp of decision processes and identify the key features that we want to
formalize, let us frame the robotic control task in ex. 2.1 as a decision problem.

Example 2.2 (Robotic control as a decision problem). Suppose the goal is to move a robot
to a certain position.

• The state consists of the positions and velocities of the robot’s joints.
• The action consists of the forces to apply to the robot’s motors.
• The state transitions are essentially the rules of physics: after applying a certain force

to the joints, their positions and velocities would change according to physical law.
• We reward positions that are closer to the desired position. To be more energy-efficient,

we could also deduct reward for applying a lot of force, or add other terms that describe
the ideal behaviour.

Exercise 2.1 (Identifying decision problems). For each of the other examples in ex. 2.1, what
information should the state include? What might the valid set of actions be? Describe the
state transitions heuristically, and a reward function that describes how the task should be
solved.

In many sequential decision-making problems, the state transitions only depend on the current
state and action. For example, in ex. 2.2, if we use Newton’s laws of physics to compute the
state transitions, then just knowing the current positions and velocities is enough to calculate
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the next positions and velocities, since Newton’s laws are second-order. We say that such state
transitions satisfy the Markov property.

Definition 2.1 (Markov property (informal)). An environment’s state transitions satisfy the
Markov property if “what happens next” only depends on the current state of the environ-
ment and not on the history of how we got here.

We will formally define the Markov property in def. 2.5 after introducing some notation for
describing MDPs.

Exercise 2.2 (Checking for the Markov property). Look back at the state transitions you
described in Exercise 2.1. Do they satisfy the Markov property? (For chess, consider the
threefold repetition rule: if the same position occurs three times during the game, either
player may claim a draw.)

Sequential decision-making problems that satisfy the Markov property are called Markov
decision processes (MDPs). MDPs are the core setting of modern RL research. We can
further classify MDPs based on whether or not the task eventually ends.

Definition 2.2 (Episodic tasks). Tasks that have a well-defined start and end, such as a game
of chess or a football match, are called episodic. Each episode starts afresh and ends once
the environment reaches a terminal state. The number of steps in an episode is called its
horizon.

Definition 2.3 (Continuing tasks). On the other hand, continuing tasks, such as managing a
business’s inventory, have no clear start or end point. The agent interacts with the environment
in an indefinite loop.

Consider an episodic task where the horizon is fixed and known in advance. That is, the agent
takes up to 𝐻 actions, where 𝐻 is some finite positive integer. We model such tasks with a
finite-horizon MDP. Otherwise, if there’s no limit to how long the episode can continue or
if the task is continuing, we model the task with an infinite-horizon MDP. We’ll begin with
the finite-horizon case in sec. 2.3 and discuss the infinite-horizon case in sec. 2.4.

2.3 Finite-horizon Markov decision processes

Many real-world tasks, such as most sports games or video games, end after a fixed number
of actions from the agent. In each episode:

1. The environment starts in some initial state 𝑠0.
2. The agent observes the state and takes an action 𝑎0.

15



3. The environment updates to state 𝑠1 according to the action.

Steps 2 and 3 are repeated 𝐻 times, resulting in a sequence of states and actions
𝑠0, 𝑎0, … , 𝑠𝐻−1, 𝑎𝐻−1, 𝑠𝐻, where 𝑠𝐻 is some terminal state. Here’s the notation we will use
to describe an MDP:

Definition 2.4 (Finite-horizon Markov decision process). The components of a finite-horizon
Markov decision process are:

1. The state that the agent interacts with. We use 𝑠ℎ to denote the state at time ℎ. 𝒮
denotes the set of possible states, called the state space.

2. The actions that the agent can take. We use 𝑎ℎ to denote the action at time ℎ. 𝒜
denotes the set of possible actions, called the action space.

3. An initial state distribution 𝑃0 ∈ △(𝒮).
4. The state transitions (a.k.a. dynamics) 𝑃 ∶ 𝒮 × 𝒜 → △(𝒮) that describe what

state the agent transitions to after taking an action. We write 𝑃(𝑠ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ) for the
probability of transitioning to state 𝑠ℎ+1 when starting in state 𝑠ℎ and taking action 𝑎ℎ.
Note that we use the letter 𝑃 for the state transition function and the symbol ℙ more
generally to indicate probabilities of events.

5. The reward function. In this course, we’ll take it to be a deterministic function on
state-action pairs, 𝑟 ∶ 𝒮 × 𝒜 → ℝ, but many results will extend to a stochastic reward
signal. We will use 𝑟ℎ ∶= 𝑟(𝑠ℎ, 𝑎ℎ) to denote the reward obtained at time ℎ.

6. A time horizon 𝐻 ∈ ℕ that specifies the maximum number of interactions in a tra-
jectory, that is, a single sequence of states, actions, and rewards:

(𝑠0, 𝑎0, 𝑟0, … , 𝑠𝐻−1, 𝑎𝐻−1, 𝑟𝐻−1). (2.1)

(Some sources omit the action and reward at the final time step.)

Combined together, these objects specify a finite-horizon Markov decision process:

ℳ = (𝒮, 𝒜, 𝑃0, 𝑃 , 𝑟, 𝐻). (2.2)

When there are finitely many states and actions, i.e. |𝒮|, |𝒜| < ∞, we can express the relevant
quantities as vectors and matrices (i.e. tables of values):

𝑃0 ∈ [0, 1]|𝒮| 𝑃 ∈ [0, 1](|𝒮×𝒜|)×|𝒮| 𝑟 ∈ ℝ|𝒮|×|𝒜|

(Verify that the types and shapes provided above make sense!)
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Definition 2.5 (Markov property). A decision process satisfies the Markov property if the
next state is independent from the past states and actions when conditioned on the current
state and action:

ℙ(𝑠ℎ+1 ∣ 𝑠0, 𝑎0, … , 𝑠ℎ, 𝑎ℎ) = ℙ(𝑠ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ)

By their definition, Markov decision processes satisfy the Markov property. This is because
the state transitions are defined using the function 𝑃 , which only takes in a single state-action
pair to transition from.

Example 2.3 (Tidying MDP). Let’s consider a simple decision problem throughout this
chapter: the task of keeping your room tidy.

Your room has the possible states 𝒮 = {orderly, messy}. You can take either of the actions
𝒜 = {ignore, tidy}. The room starts off orderly, that is, 𝑃0(orderly) = 1.

The state transitions are as follows: if you tidy the room, it becomes (or remains) orderly;
if you ignore the room, it might become messy, according to the probabilities in tbl. 2.1.

The rewards are as follows: You get penalized for tidying an orderly room (a waste of time)
or ignoring a messy room, but you get rewarded for ignoring an orderly room (since you can
enjoy your additional time). Tidying a messy room is a chore that gives no reward.

Consider a time horizon of 𝐻 = 7 days (one interaction per day). Let 𝑡 = 0 correspond to
Monday and 𝑡 = 6 correspond to Sunday.

Table 2.1: Description of the MDP in ex. 2.3.

𝑠 𝑎 𝑃(orderly ∣ 𝑠, 𝑎) 𝑃 (messy ∣ 𝑠, 𝑎) 𝑟(𝑠, 𝑎)
orderly ignore 0.7 0.3 1
orderly tidy 1 0 -1
messy ignore 0 1 -1
messy tidy 1 0 0

We’ll now introduce several core concepts when working with MDPs.

Definition 2.6 (Policies). A policy 𝜋 describes the agent’s strategy: which actions it takes
in a given situation. A key goal of RL is to find the optimal policy that maximizes the total
reward on average.

There are three axes along which policies can vary: their outputs, inputs, and time-dependence.
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(a) A deterministic policy, which produces a single
action

(b) A stochastic policy, which produces a distribu-
tion over possible actions

1. Outputs: Deterministic or stochastic. A deterministic policy outputs actions while
a stochastic policy outputs distributions over actions.

2. Inputs: history-independent or history-dependent. A history-independent (a.k.a.
“Markovian”) policy only depends on the current state, while a history-dependent policy
depends on the sequence of past states, actions, and rewards. We’ll only consider history-
independent policies in this course.

3. Stationary or time-dependent. A stationary (a.k.a. time-homogeneous) policy keeps
the same strategy at all time steps, while a time-dependent policy can depend on the
current timestep. For consistency with states and actions, we will denote the timestep
as a subscript, i.e. 𝜋 = {𝜋0, … , 𝜋𝐻−1}.

Note that for finite state and action spaces, we can represent a randomized mapping 𝒮 → △(𝒜)
as a matrix 𝜋 ∈ [0, 1]𝒮×𝒜 where each row describes the policy’s distribution over actions for
the corresponding state.

Example 2.4 (Policies for the tidying MDP). Here are some possible deterministic policies
for the tidying MDP ex. 2.3:

• Always tidy: 𝜋(𝑠) = tidy.
• Only tidy on weekends: 𝜋ℎ(𝑠) = tidy if ℎ ∈ {5, 6} and 𝜋ℎ(𝑠) = ignore otherwise.
• Only tidy if the room is messy: 𝜋ℎ(messy) = tidy and 𝜋ℎ(orderly) = ignore for all ℎ.

Exercise 2.3 (Conditional independence for future states). Suppose actions are chosen accord-
ing to a history-independent policy. Use the chain rule of probability to show that, conditioned
on the current state and action 𝑠ℎ, 𝑎ℎ, all future states 𝑠ℎ′ where ℎ′ > ℎ are conditionally in-
dependent of the past states and actions. That is, for all ℎ′ > ℎ,

ℙ(𝑠ℎ′ ∣ 𝑠0, 𝑎0, … , 𝑠ℎ, 𝑎ℎ) = ℙ(𝑠ℎ′ ∣ 𝑠ℎ, 𝑎ℎ).
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Definition 2.7 (Trajectory distribution). Once we’ve chosen a policy, we can sample trajec-
tories by repeatedly choosing actions according to the policy and observing the rewards and
updated states returned by the environment. This generative process induces a distribution
𝜌𝜋 over trajectories. (We assume that 𝑃0 and 𝑃 are clear from context.)

Example 2.5 (Trajectories in the tidying environment). Here is a possible trajectory for the
tidying example:

ℎ 0 1 2 3 4 5 6
𝑠 orderly orderly orderly messy messy orderly orderly
𝑎 tidy ignore ignore ignore tidy ignore ignore
𝑟 −1 1 1 −1 0 1 1

Could any of the policies in ex. 2.4 have generated this trajectory?

Note that for a history-independent policy, using the Markov property (def. 2.5), we can write
down the likelihood function of this probability distribution in an autoregressive way (i.e. one
timestep at a time):

Theorem 2.1 (Trajectory distributions of history-independent policies). Let 𝜋 be a history-
independent policy. Then its trajectory distribution 𝜌𝜋 (def. 2.7) over sequences of actions and
states (𝑠0, 𝑎0, … , 𝑠𝐻−1, 𝑎𝐻−1) can be written as

𝜌𝜋(𝜏) ∶= 𝑃0(𝑠0)𝜋0(𝑎0 ∣ 𝑠0)𝑃 (𝑠1 ∣ 𝑠0, 𝑎0) ⋯ 𝑃(𝑠𝐻−1 ∣ 𝑠𝐻−2, 𝑎𝐻−2)𝜋𝐻−1(𝑎𝐻−1 ∣ 𝑠𝐻−1). (2.3)

Note that we use a deterministic reward function, so we only consider randomness over the
states and actions.

Exercise 2.4 (Trajectory distribution for stochastic reward). Modify eq. 2.3 for the case when
the reward function is stochastic, that is, 𝑟 ∶ 𝒮 × 𝒜 → △(ℝ).

For a deterministic policy 𝜋, we have that 𝜋ℎ(𝑎 ∣ 𝑠) = 1 {𝑎 = 𝜋ℎ(𝑠)}; that is, the probability
of taking an action is 1 if it’s the unique action prescribed by the policy for that state and 0
otherwise. In this case, the only randomness in sampling trajectories comes from the initial
state distribution 𝑃0 and the state transitions 𝑃 .
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Figure 2.6: A trajectory is generated by taking a sequence of actions according to the history-
independent policy.

2.3.1 Policy evaluation

Recall that the core goal of an RL algorithm is to find a policy that maximizes the expected
total reward

𝔼[𝑟0 + ⋯ + 𝑟𝐻−1], (2.4)

where 𝑟ℎ = 𝑟(𝑠ℎ, 𝑎ℎ). Note that the quantity 𝑟0 + ⋯ + 𝑟𝐻−1 is a random variable whose
distribution depends on the policy’s trajectory distribution 𝜌𝜋 (def. 2.7). We need tools for
describing the expected total reward achieved by a given policy, starting in specific states and
actions. This will allow us to compare the quality of different policies and compute the optimal
policy.

Definition 2.8 (Value function). Let 𝜋 be a history-independent policy. Its value function
at time ℎ returns the expected remaining reward when starting in a specific state:

𝑉 𝜋
ℎ (𝑠) ∶= 𝔼

𝜏∼𝜌𝜋
[𝑟ℎ + ⋯ + 𝑟𝐻−1 ∣ 𝑠ℎ = 𝑠] (2.5)

Definition 2.9 (Action-value function). Similarly, a history-independent policy 𝜋’s action-
value function (aka Q function) at time ℎ returns its expected remaining reward, starting
in a specific state and taking a specific action:

𝑄𝜋
ℎ(𝑠, 𝑎) ∶= 𝔼

𝜏∼𝜌𝜋
[𝑟ℎ + ⋯ + 𝑟𝐻−1 ∣ 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎]. (2.6)

These two functions define each other in the following way:
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Figure 2.7: The policy starts in state 𝑠 at time ℎ. Then the expected remaining reward is
computed.

Figure 2.8: The policy starts in state 𝑠 at time ℎ and takes action 𝑎. Then the expected
remaining reward is computed.

Theorem 2.2 (Relating 𝑉 𝜋 and 𝑄𝜋). Let 𝜋 be a history-independent policy. The value of a
state is the expected action-value in that state over actions drawn from the policy:

𝑉 𝜋
ℎ (𝑠) = 𝔼

𝑎∼𝜋ℎ(⋅∣𝑠)
[𝑄𝜋

ℎ(𝑠, 𝑎)]. (2.7)

The value of a state-action pair is the sum of the immediate reward and the expected value of
the following state:

𝑄𝜋
ℎ(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼

𝑠′∼𝑃(𝑠,𝑎)
[𝑉 𝜋

ℎ+1(𝑠′)]. (2.8)

Exercise 2.5 (Proof of relationship between 𝑉 𝜋 and 𝑄𝜋). Use the law of iterated expectations
to show eq. 2.7. Now apply linearity of expectation to show eq. 2.8. Where did you use the
assumption that 𝜋 doesn’t depend on the past states and actions?

Remark 2.2 (Computing 𝑄𝜋 from 𝑉 𝜋 requires environment). Note that all you need to compute
𝑉 𝜋

ℎ from 𝑄𝜋
ℎ (eq. 2.7) is knowledge of the policy 𝜋. On the other hand, to compute 𝑄𝜋

ℎ from
𝑉 𝜋

ℎ+1 (eq. 2.8), you need knowledge of the reward function and state transitions to look ahead
one step. In later chapters, we’ll study problems where the environment is unknown, making
it more useful to approximate 𝑄𝜋

ℎ than 𝑉 𝜋
ℎ .
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Putting eq. 2.7 and eq. 2.8 together reveals the Bellman consistency equations. By simply
considering the cumulative reward as the sum of the immediate reward and the remaining
reward, we can describe the value function in terms of itself. The resulting system of equations
is named after Richard Bellman (1920–1984), who is credited with introducing dynamic
programming in 1953.

Theorem 2.3 (Bellman consistency equations). For a history-independent policy 𝜋,

𝑉 𝜋
ℎ (𝑠) = 𝔼

𝑎∼𝜋ℎ(𝑠)
𝑠′∼𝑃(𝑠,𝑎)

[𝑟(𝑠, 𝑎) + 𝑉 𝜋
ℎ+1(𝑠′)]. (2.9)

The proof is left as Exercise 2.5. This is a system of 𝐻|𝒮| equations (one equation per state
per timestep) in 𝐻|𝒮| unknowns (the values 𝑉 𝜋

ℎ (𝑠)), so 𝑉 𝜋 is the unique solution, as long as
no two states are exactly identical to each other.

Remark 2.3 (The Bellman consistency equation for deterministic policies). Note that for
history-independent deterministic policies, the Bellman consistency equations simplify to

𝑉 𝜋
ℎ (𝑠) = 𝑟(𝑠, 𝜋ℎ(𝑠)) + 𝔼

𝑠′∼𝑃(𝑠,𝜋ℎ(𝑠))
[𝑉 𝜋

ℎ+1(𝑠′)]. (2.10)

How can we actually evaluate a given policy, that is, compute its value function?

Suppose we start with some guess 𝑣ℎ ∶ 𝒮 → ℝ for the state values at time ℎ = 0, … , 𝐻 − 1. We
write 𝑣 in lowercase to indicate that it might not be an actual value function of a policy. How
might we improve this guess?

Recall that the Bellman consistency equations (eq. 2.9) hold for the value functions of history-
independent policies. So if 𝑣 is close to the target 𝑉 𝜋, it should nearly satisfy the system of
equations associated with 𝜋. With this in mind, suppose we replace 𝑉 𝜋

ℎ+1 with 𝑣ℎ+1 on the
right-hand side. Then the new right-hand side quantity,

𝔼
𝑎∼𝜋ℎ(𝑠)

𝑠′∼𝑃(𝑠,𝑎)

[𝑟(𝑠, 𝑎) + 𝑣ℎ+1(𝑠′)], (2.11)

can be thought of as follows: we take one action according to 𝜋, observe the immediate reward,
and evaluate the next state using 𝑣. This is illustrated in fig. 2.9 below. This operation gives
us an updated estimate of the value of 𝑉 𝜋

ℎ (𝑠) that is at least as accurate as applying 𝑣(𝑠)
directly.

We can treat this operation of taking 𝑣ℎ to its improved version in eq. 2.11 as a higher-order
function known as the Bellman operator.
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Figure 2.9: We evaluate the next state using 𝑣ℎ+1.

Definition 2.10 (Bellman operator). Let 𝜋 ∶ 𝒮 → △(𝒜). the Bellman operator 𝒥𝜋 ∶ (𝒮 →
ℝ) → (𝒮 → ℝ) is the higher-order function that takes in a function 𝑣 ∶ 𝒮 → ℝ and returns the
r.h.s. of the Bellman equation with 𝑣 substituted in:

𝒥𝜋(𝑣) ∶= ⎛⎜⎜
⎝

𝑠 ↦ 𝔼
𝑎∼𝜋(𝑠)

𝑠′∼𝑃(𝑠,𝑎)

[𝑟(𝑠, 𝑎) + 𝑣(𝑠′)]⎞⎟⎟
⎠

. (2.12)

The Bellman operator is a crucial tool for reasoning about MDPs. Intuitively, it answers the
following question: if we evaluate the next state using 𝑣, how good is the current state, if we
take a single action from the given policy?

function bellman_operator_looping(mdp ∶ MDP, 𝜋 ∶ ℝ𝑆×𝐴, 𝑣 ∶ ℝ𝑆)
” Looping definition of the Bellman operator. Concise version is below ”
𝑣lhs ← 0𝑆

for 𝑠 ∈ range(𝑆) do
for 𝑎 ∈ range(𝐴) do

for 𝑠′ ∈ range(𝑆) do
𝑣lhs(𝑠) ← 𝑣lhs(𝑠) + 𝜋(𝑠, 𝑎)𝑃 (𝑠, 𝑎, 𝑠′) ⋅ (𝑟(𝑠, 𝑎) + 𝛾𝑣(𝑠′))

end for
end for

end for
return 𝑣lhs

end function

Figure 2.10: An algorithm for computing the Bellman operator for a finite state and action
space.

The Bellman operator also gives us a concise way to express the Bellman consistency equations
(eq. 2.9) for the value function:

𝑉 𝜋
ℎ = 𝒥𝜋ℎ(𝑉 𝜋

ℎ+1) (2.13)
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The Bellman consistency equations (eq. 2.9) give us a convenient algorithm for evaluating
stationary policies: it expresses the value function at timestep ℎ as a function of the value
function at timestep ℎ + 1. This means we can start at the end of the time horizon, where
the value is known, and work backwards in time, using the Bellman operator to compute the
value function at each time step.

function dp_eval_finite(mdp ∶ MDP, 𝜋 ∶ ℝ𝑆×𝐴)
”Evaluate a policy using dynamic programming.”
𝑉 𝜋 ← 0mdp.𝐻+1×mdp.𝑆

for ℎ ∈ range(mdp.𝐻 − 1, −1, −1) do
𝑉 𝜋

ℎ ← 𝒥(mdp, 𝜋ℎ, 𝑉 𝜋
ℎ+1)

end for
return 𝑉 𝜋

∶−1
end function

Figure 2.11: A dynamic programming algorithm for evaluating a policy in a finite-horizon
MDP.

This runs in time 𝑂(𝐻 ⋅ |𝒮|2 ⋅ |𝒜|). Note that the implementation of the Bellman operator in
fig. 2.10 can be easily modified to compute 𝑄𝜋 as an intermediate step. Do you see how?

Example 2.6 (Tidying policy evaluation). Let’s evaluate the policy from ex. 2.4 in the tidying
MDP that tidies if and only if the room is messy. We’ll use the Bellman consistency equation
to compute the value function at each time step.
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𝑉 𝜋
𝐻−1(orderly) = 𝑟(orderly, ignore)

= 1
𝑉 𝜋

𝐻−1(messy) = 𝑟(messy, tidy)
= 0

𝑉 𝜋
𝐻−2(orderly) = 𝑟(orderly, ignore) + 𝔼

𝑠′∼𝑃(orderly,ignore)
[𝑉 𝜋

𝐻−1(𝑠′)]

= 1 + 0.7 ⋅ 𝑉 𝜋
𝐻−1(orderly) + 0.3 ⋅ 𝑉 𝜋

𝐻−1(messy)
= 1 + 0.7 ⋅ 1 + 0.3 ⋅ 0
= 1.7

𝑉 𝜋
𝐻−2(messy) = 𝑟(messy, tidy) + 𝔼

𝑠′∼𝑃(messy,tidy)
[𝑉 𝜋

𝐻−1(𝑠′)]

= 0 + 1 ⋅ 𝑉 𝜋
𝐻−1(orderly) + 0 ⋅ 𝑉 𝜋

𝐻−1(messy)
= 1

𝑉 𝜋
𝐻−3(orderly) = 𝑟(orderly, ignore) + 𝔼

𝑠′∼𝑃(orderly,ignore)
[𝑉 𝜋

𝐻−2(𝑠′)]

= 1 + 0.7 ⋅ 𝑉 𝜋
𝐻−2(orderly) + 0.3 ⋅ 𝑉 𝜋

𝐻−2(messy)
= 1 + 0.7 ⋅ 1.7 + 0.3 ⋅ 1
= 2.49

𝑉 𝜋
𝐻−3(messy) = 𝑟(messy, tidy) + 𝔼

𝑠′∼𝑃(messy,tidy)
[𝑉 𝜋

𝐻−2(𝑠′)]

= 0 + 1 ⋅ 𝑉 𝜋
𝐻−2(orderly) + 0 ⋅ 𝑉 𝜋

𝐻−2(messy)
= 1.7

etc. You may wish to repeat this computation for the other policies to get a better sense of
this algorithm.

𝑠 ℎ = 0 ℎ = 1 ℎ = 2 ℎ = 3 ℎ = 4 ℎ = 5 ℎ = 6
orderly 5.56217 4.79277 4.0241 3.253 2.49 1.7 1
messy 4.79277 4.0241 3.253 2.49 1.7 1 0

2.3.2 Optimality

We’ve just seen how to evaluate a given policy. But how can we find the best policy for a given
environment? We must first define what it means for a policy to be optimal. We’ll investigate
optimality for history-independent policies. In Theorem 2.6, we’ll see that constraining our-
selves to history-independent policies isn’t actually a constraint: the best history-independent
policy performs at least as well as the best history-dependent policy, in all scenarios!
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Remark 2.4 (Intuition). How is this possible? Recall the Markov property (def. 2.5), which
says that once we know the current state, the next state becomes independent from the past
history. This means that history-dependent policies, intuitively speaking, don’t benefit over
simply history-independent ones in MDPs.

Definition 2.11 (Optimal policies). Let 𝜋⋆ be a history-independent policy. We say that
𝜋⋆ is optimal if 𝑉 𝜋⋆

ℎ (𝑠) ≥ 𝑉 𝜋
ℎ (𝑠) for any history-independent policy 𝜋 at any time ℎ ∈ [𝐻].

In other words, an optimal history-independent policy achieves the highest possible expected
remaining reward in every state at every time.

Example 2.7 (Optimal policy in the tidying MDP). For the tidying MDP (ex. 2.3), you
might guess that the optimal strategy is

𝜋(𝑠) = {tidy 𝑠 = messy
ignore otherwise

(2.14)

since this keeps the room in the “orderly” state in which reward can be obtained.

Definition 2.12 (Optimal value function). Given a state 𝑠 at time ℎ, the optimal value 𝑉 ⋆
ℎ (𝑠)

is the maximum expected remaining reward achievable by any history-independent policy 𝜋:

𝑉 ⋆
ℎ (𝑠) ∶= max

𝜋
𝑉 𝜋

ℎ (𝑠). (2.15)

The optimal action-value function is defined analogously:

𝑄⋆
ℎ(𝑠, 𝑎) ∶= max

𝜋
𝑄𝜋

ℎ(𝑠, 𝑎). (2.16)

These satisfy the following relationship (cf Theorem 2.2):

Theorem 2.4 (Relating 𝑉 ⋆ and 𝑄⋆). The optimal value of a state is the maximum value
across actions from that state:

𝑉 ⋆
ℎ (𝑠) = max

𝑎∈𝒜
𝑄⋆

ℎ(𝑠, 𝑎). (2.17)

The optimal value of an action is the immediate reward plus the expected value from the next
state:

𝑄⋆
ℎ(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼

𝑠′∼𝑃(𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)]. (2.18)

26



Proof. We first prove eq. 2.17. We begin by expanding the definition of the optimal value
function using eq. 2.7:

𝑉 ⋆
ℎ (𝑠) = max

𝜋
𝑉 𝜋

ℎ (𝑠)
= max

𝜋 𝔼
𝑎∼𝜋ℎ(𝑠)

[𝑄𝜋
ℎ(𝑠, 𝑎)]. (2.19)

Now note that 𝑄𝜋
ℎ doesn’t depend on 𝜋ℎ, so we can split the maximization over

𝜋 = (𝜋0, … , 𝜋𝐻−1) into an outer optimization over the immediate action 𝜋ℎ and an
inner optimization over the remaining actions 𝜋ℎ+1, … , 𝜋𝐻−1:

max
𝜋 𝔼

𝑎∼𝜋ℎ(𝑠)
[𝑄𝜋

ℎ(𝑠, 𝑎)] = max
𝜋ℎ

𝔼
𝑎∼𝜋ℎ(𝑠)

[ max
𝜋ℎ+1,…,𝜋𝐻−1

𝑄𝜋
ℎ(𝑠, 𝑎)]. (2.20)

But now the inner quantity is exactly 𝑄⋆
ℎ(𝑠, 𝑎) as defined in eq. 2.16. Now note that maximizing

over 𝜋ℎ reduces to just maximizing over the action taken:

max
𝜋ℎ

𝔼
𝑎∼𝜋ℎ(𝑠)

[⋯] = max
𝑎∈𝒜

[⋯]. (2.21)

This proves eq. 2.17.

We now prove eq. 2.18. We begin by using eq. 2.8:

𝑄⋆
ℎ(𝑠, 𝑎) = max

𝜋
𝑄𝜋

ℎ(𝑠, 𝑎)

= max
𝜋

[𝑟(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃(𝑠,𝑎)

[𝑉 𝜋
ℎ+1(𝑠′)]]

We can move the maximization over 𝜋 under the expectation since 𝑠, 𝑎, and 𝑠′ are all indepen-
dent of 𝜋. Substituting the definition of 𝑉 ⋆ concludes the proof.

As in the Bellman consistency equations (Theorem 2.3), combining eq. 2.17 and eq. 2.18 gives
the Bellman optimality equations.

Theorem 2.5 (Bellman optimality equations). The optimal value function function (def. 2.12)
satisfies, for all timesteps ℎ ∈ [𝐻 − 1],

𝑉 ⋆
ℎ (𝑠) = max

𝑎
𝑟(𝑠, 𝑎) + 𝔼

𝑠′∼𝑃(𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)]. (2.22)
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Like the Bellman consistency equations (eq. 2.9), This is a system of 𝐻|𝒮| equations in 𝐻|𝒮|
unknowns, so 𝑉 ⋆ is the unique solution (assuming all the states are distinguishable from each
other).

Note that the letter 𝜋 doesn’t appear. This will prove useful when we discuss off-policy
algorithms later in the course.

We now construct a deterministic history-independent optimal policy by acting greedily with
respect to the optimal action-value function:

Definition 2.13 (Greedy policies). For any sequence of functions 𝑞ℎ ∶ 𝒮 × 𝒜 → ℝ for ℎ =
0, … , 𝐻 − 1, we define the greedy policy 𝜋𝑞 to be the deterministic policy that selects the
action with the highest value according to 𝑞 at each state:

𝜋𝑞
ℎ(𝑠) ∶= arg max

𝑎∈𝒜
𝑞ℎ(𝑠, 𝑎). (2.23)

Note that it is not true in general that 𝑄𝜋𝑞 = 𝑞 for a greedy policy! For one, 𝑞 might not even
be a consistent Q function.

Theorem 2.6 (A greedy optimal policy). The greedy policy 𝜋𝑄⋆ , where 𝑄⋆ is the optimal
action-value function (eq. 2.16), is an optimal policy (def. 2.11). Furthermore, 𝜋𝑄⋆ is optimal
across all policies 𝜋any, including history-dependent ones, in the sense that for any partial
trajectory

𝜏ℎ = (𝑠0, 𝑎0, 𝑟0, … , 𝑠ℎ−1, 𝑎ℎ−1, 𝑟ℎ−1, 𝑠ℎ),

it achieves a higher expected remaining reward:

𝔼
𝜏∼𝜌𝜋𝑄⋆

[𝑟ℎ + ⋯ + 𝑟𝐻−1 ∣ 𝜏ℎ] ≥ 𝔼
𝜏∼𝜌𝜋any

[𝑟ℎ + ⋯ + 𝑟𝐻−1 ∣ 𝜏ℎ]. (2.24)

By conditioning on 𝜏ℎ, we mean to condition on the event that 𝑠ℎ′ , 𝑎ℎ′ are the state and action
visited at time ℎ′ < ℎ, and 𝑠ℎ is the state at time ℎ. (If the reward function were stochastic,
we would condition on the observed rewards as well.)

We will now prove by induction that 𝜋𝑄⋆ is optimal. Essentially, we begin at the end of the
trajectory, where the optimal action is simply the one that yields highest immediate reward.
Once the optimal values at time 𝐻 − 1 are known, we use these to compute the optimal
values at time 𝐻 −2 using the Bellman optimality equations (eq. 2.38), and proceed backward
through the trajectory.
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Figure 2.12: Illustrating a dynamic programming algorithm for computing the optimal policy
in a finite-horizon MDP.

Proof. At the end of the trajectory (time step 𝐻 − 1), we can’t take any more actions, so the
𝑄-function simply returns the immediate reward:

𝑄⋆
𝐻−1(𝑠, 𝑎) = 𝑟(𝑠, 𝑎). (2.25)

𝜋𝑄⋆ is then optimal across all policies at time 𝐻 − 1, since the policy only determines a single
action, the one which maximizes (expected) remaining reward:

𝔼
𝜏∼𝜌𝜋𝑄⋆

[𝑟𝐻−1 ∣ 𝑠𝐻−1 = 𝑠] = max
𝑎∈𝒜

𝑟(𝑠, 𝑎). (2.26)

For the inductive step, suppose 𝜋𝑄⋆ is optimal across all policies at time ℎ + 1. Note that this
implies 𝑉 𝜋𝑄⋆ = 𝑉 ⋆. Then for any other policy 𝜋any (which could be history-dependent), and
for any partial trajectory 𝜏ℎ,

𝔼
𝜏∼𝜌𝜋any

[𝑟ℎ + ⋯ + 𝑟𝐻−1 ∣ 𝜏ℎ]

= 𝔼
𝑎∼𝜋any

ℎ (𝜏ℎ)
𝑠′∼𝑃(𝑠ℎ,𝑎)

[𝑟ℎ + 𝔼
𝜏∼𝜌𝜋any

[𝑟ℎ+1 + ⋯ + 𝑟𝐻−1 ∣ 𝜏ℎ, 𝑎ℎ = 𝑎, 𝑠ℎ+1 = 𝑠′]]

≤ 𝔼
𝑎∼𝜋any

ℎ (𝜏ℎ)
𝑠′∼𝑃(𝑠ℎ,𝑎)

[𝑟ℎ + 𝑉 ⋆
ℎ+1(𝑠′)]

≤ max
𝑎∈𝒜

𝑟(𝑠ℎ, 𝑎) + 𝔼
𝑠′∼𝑃(𝑠ℎ,𝑎)

[𝑉 ⋆
ℎ+1(𝑠′)]

= 𝑉 ⋆
ℎ (𝑠ℎ).

(2.27)

This completes the inductive step, which shows that 𝜋𝑄⋆ is optimal across all policies at every
time ℎ ∈ [𝐻].
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function find_optimal_policy(mdp ∶ MDP)
𝑄 ← 0𝐻×𝑆×𝐴

𝜋 ← 0𝐻×𝑆×𝐴

𝑉 ← 0𝐻+1×𝑆

for ℎ ∈ range(𝐻 − 1, −1, −1) do
𝑄ℎ ← 𝑟 + 𝑃𝑉ℎ+1
𝜋ℎ ← jnp.eye(𝑆)jnp.argmax(𝑄ℎ)
𝑉ℎ ← jnp.max(𝑄ℎ)

end for
𝑄 ← jnp.stack(𝑄)
𝜋 ← jnp.stack(𝜋)
𝑉 ← jnp.stack(𝑉∶−1)
return (𝜋, 𝑉 , 𝑄)

end function

Figure 2.13: Pseudocode for the dynamic programming algorithm.

At each of the 𝐻 timesteps, we must compute 𝑄⋆
ℎ for each of the |𝒮||𝒜| state-action pairs. Each

computation takes |𝒮| operations to evaluate the average value over 𝑠′. Computing 𝜋⋆
ℎ and

𝑉 ⋆
ℎ then requires computing the value-maximizing action in each state, which is an additional

𝑂(|𝒮|𝒜|) comparisons. This is dominated by the earlier term, resulting in a total computation
time of 𝑂(𝐻 ⋅ |𝒮|2 ⋅ |𝒜|).
Note that this algorithm is identical to the policy evaluation algorithm (fig. 2.11), but instead of
averaging over the actions chosen by a policy, we instead take a maximum over the action-values.
We’ll see this relationship between policy evaluation and optimal policy computation
show up again in the infinite-horizon setting.

"Assertions passed (the 'tidy when messy' policy is optimal)"

Let us review some equivalent definitions of an optimal policy:

Remark 2.5 (Equivalent definitions of an optimal policy). Let 𝜋 be a stationary policy. Then
the following are all equivalent:

1. 𝜋 is optimal across history-independent policies (def. 2.11).
2. 𝜋 is optimal across all policies (eq. 2.24).
3. 𝑉 𝜋 = 𝑉 ⋆.
4. 𝑄𝜋 = 𝑄⋆.
5. 𝑉 𝜋 satisfies the Bellman optimality equations (eq. 2.38).

1 and 3 are the same by definition. 3 and 4 are the same since 𝑉 ⋆ and 𝑄⋆ uniquely define each
other by eq. 2.17 and 𝑉 𝜋 and 𝑄𝜋 uniquely define each other by eq. 2.7 and eq. 2.8. 3 and 5
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are the same by the Bellman optimality equations (Theorem 2.5). 1 and 2 are the same as
shown in the proof of Theorem 2.6.

Remark 2.6 (Why stochastic policies). Given that there exists an optimal deterministic policy,
why do we try ever try to learn stochastic policies? We will see a partial answer to this when
we discuss the exploration-exploitation tradeoff in Chapter 4. So far, we’ve assumed that the
environment is totally known. If it isn’t, however, we need some way to explore different
possible actions, and stochastic policies provide a natural way to do this.

2.4 Infinite-horizon Markov decision processes

What if we allow trajectories to continue for an infinite amount of time, that is, set the
time horizon 𝐻 to infinity? This might seem impractical, since in the real world, most of the
trajectories we care about terminate after some fixed number of steps. However, we will see that
infinite-horizon MDPs are simpler in certain regards and can serve as good approximations
to finite-horizon tasks. A crucial result is that Bellman operators (def. 2.10) in this setting are
contraction mappings (Theorem 2.8), which yield simple fixed-point iteration algorithms
for policy evaluation (sec. 2.4.3.2) and computing the optimal value function (sec. 2.4.4.1).
Finally, we’ll present the policy iteration algorithm (sec. 2.4.4.2). In addition to being an
effective tool in its own right, we will find that policy iteration serves as a useful framework
for designing and analyzing later algorithms.

2.4.1 Differences from the finite horizon setting

Remark 2.7 (Discounted rewards). First of all, note that the total reward 𝑟0 + 𝑟1 + ⋯ might
blow up to infinity. To ensure that we work with bounded quantities, we insert a discount
factor 𝛾 ∈ [0, 1) such that rewards become less valuable the further into the future they are:

𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + ⋯ =
∞

∑
ℎ=0

𝛾ℎ𝑟ℎ ≤ 𝑅 1
1 − 𝛾 , (2.28)

where 𝑅 is the maximum possible reward. We can think of 𝛾 as measuring how much we care
about the future: if it’s close to 0, we only care about the near-term rewards; if it’s close to 1,
we put more weight into future rewards.

You can also analyze 𝛾 as the probability of continuing the trajectory at each time step. (This
is equivalent to 𝐻 being distributed by a First Success distribution with success probability
𝛾.) This accords with the above interpretation: if 𝛾 is close to 0, the trajectory will likely be
very short, while if 𝛾 is close to 1, the trajectory will likely continue for a long time.
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The other components of the MDP remain from the finite-horizon setting (def. 2.4):

ℳ = (𝒮, 𝒜, 𝑃0, 𝑃 , 𝑟, 𝛾).

Remark 2.8 (Stationary policies). Time-dependent policies become difficult to handle in the
infinite-horizon case. Not only would they be computationally impossible to store, but also,
many of the DP approaches we saw required us to start at the end of the trajectory, which
is no longer possible. We’ll shift to stationary policies 𝜋 ∶ 𝒮 → 𝒜 (deterministic) or △(𝒜)
(stochastic), which don’t explicitly depend on the timestep.

Exercise 2.6 (Stationary policy examples). Which of the policies in ex. 2.4 (policies in the
tidying MDP) are stationary?

Definition 2.14 (Value functions). We’ll also consider stationary value functions 𝑉 𝜋 ∶ 𝒮 → ℝ
and 𝑄𝜋 ∶ 𝒮 × 𝒜 → ℝ. These now represent the expected total discounted reward:

𝑉 𝜋(𝑠) = 𝔼
𝜏∼𝜌𝜋

[𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + ⋯ ∣ 𝑠0 = 𝑠]

𝑄𝜋(𝑠, 𝑎) = 𝔼
𝜏∼𝜌𝜋

[𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + ⋯ ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎] (2.29)

Exercise 2.7 (Time-independent). Note that we add up the rewards starting from time 0,
whereas in the finite-horizon case, we needed to explicitly add the rewards from time ℎ onwards.
Heuristically speaking, why does it no longer matter which time step we start on when defining
the value function? Refer back to the Markov property (def. 2.5).

Theorem 2.7 (Bellman consistency equations). The Bellman consistency equations play the
same role they did in the finite-horizon setting (Theorem 2.3). We need to insert a factor of
𝛾 to account for the discounting, and the ℎ subscript is gone since 𝑉 𝜋 is stationary:

𝑉 𝜋(𝑠) = 𝔼
𝑎∼𝜋(𝑠)

𝑠′∼𝑃(𝑠,𝑎)

[𝑟(𝑠, 𝑎) + 𝛾𝑉 𝜋(𝑠′)]. (2.30)

The value function and action-value function are still related in the same way:

𝑉 𝜋(𝑠) = 𝔼
𝑎∼𝜋(𝑠)

[𝑄(𝑠, 𝑎)]

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

[𝑉 𝜋(𝑠′)]. (2.31)
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2.4.2 Contraction mappings

Recall that a policy’s Bellman operator takes a guess for the policy’s value function and returns
an improved guess using one step of the policy (def. 2.10). In the infinite-horizon setting, this
has the same form:

Definition 2.15 (Bellman operator). Let 𝜋 ∶ 𝒮 → △(𝒜) be a stationary policy. Its Bellman
operator is defined

𝒥𝜋(𝑣) ∶= (𝑠 ↦ 𝔼
𝑎∼𝜋(𝑠)

𝑠′∼𝑃(𝑠,𝑎)

[𝑟(𝑠, 𝑎) + 𝛾𝑣(𝑠′)]). (2.32)

The crucial property of the Bellman operator is that it is a contraction mapping for any
policy. Intuitively, if we start with two guesses 𝑣, 𝑢 ∶ 𝒮 → ℝ, if we repeatedly apply the Bellman
operator to each of them, they will get closer and closer together at an exponential rate.

Definition 2.16 (Contraction mapping). Let 𝑋 be a set with a norm ‖⋅‖. We call an operator
𝑓 ∶ 𝑋 → 𝑋 a contraction mapping if for any 𝑥, 𝑦 ∈ 𝑋,

‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝛾‖𝑥 − 𝑦‖

for some fixed 𝛾 ∈ (0, 1).

Exercise 2.8 (Contraction mappings pull points together). Show that for a contraction map-
ping 𝑓 with coefficient 𝛾, for all 𝑡 ∈ ℕ,

‖𝑓 (𝑡)(𝑥) − 𝑓 (𝑡)(𝑦)‖ ≤ 𝛾𝑡‖𝑥 − 𝑦‖, (2.33)

i.e. any two points will be pushed closer by at least a factor of 𝛾 at each iteration.

It is a powerful fact, known as the Banach fixed-point theorem, that every contraction
mapping has a unique fixed point 𝑥⋆ such that 𝑓(𝑥⋆) = 𝑥⋆. This means that if we repeatedly
apply 𝑓 to any starting point, we will eventually converge to 𝑥⋆:

‖𝑓 (𝑡)(𝑥) − 𝑥⋆‖ ≤ 𝛾𝑡‖𝑥 − 𝑥⋆‖. (2.34)

Let’s return to the RL setting and apply this result to the Bellman operator. How can we
measure the distance between two functions 𝑣, 𝑢 ∶ 𝒮 → ℝ? We’ll take the supremum norm
as our distance metric:
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‖𝑣 − 𝑢‖∞ ∶= sup
𝑠∈𝒮

|𝑣(𝑠) − 𝑢(𝑠)|,

i.e. we compare the functions on the state that causes the biggest gap between them. The
Bellman consistency equations (Theorem 2.7) state that 𝑉 𝜋 is the fixed point of 𝒥𝜋. Then
eq. 2.34 implies that if we repeatedly apply 𝒥𝜋 to any starting guess, we will eventually converge
to 𝑉 𝜋:

‖(𝒥𝜋)(𝑡)(𝑣) − 𝑉 𝜋‖∞ ≤ 𝛾𝑡‖𝑣 − 𝑉 𝜋‖∞. (2.35)

We’ll use this useful fact to prove the convergence of several algorithms later on.

Theorem 2.8 (The Bellman operator is a contraction mapping). Let 𝜋 be a stationary policy.
There exists 𝛾 ∈ (0, 1) such that for any two functions 𝑢, 𝑣 ∶ 𝒮 → ℝ,

‖𝒥𝜋(𝑣) − 𝒥𝜋(𝑢)‖∞ ≤ 𝛾‖𝑣 − 𝑢‖∞.

Proof. For all states 𝑠 ∈ 𝒮,

|[𝒥𝜋(𝑣)](𝑠) − [𝒥𝜋(𝑢)](𝑠)| = ∣ 𝔼
𝑎∼𝜋(𝑠)

[𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑣(𝑠′)]

− 𝔼
𝑎∼𝜋(𝑠)

[𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑢(𝑠′)] ∣

= 𝛾 ∣ 𝔼
𝑠′∼𝑃(𝑠,𝑎)

[𝑣(𝑠′) − 𝑢(𝑠′)]∣

≤ 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

|𝑣(𝑠′) − 𝑢(𝑠′)| (Jensen’s inequality)

≤ 𝛾 max
𝑠′

|𝑣(𝑠′) − 𝑢(𝑠′)|

= 𝛾‖𝑣 − 𝑢‖∞.

2.4.3 Policy evaluation

The backwards DP technique we used in the finite-horizon case (sec. 2.3.1) no longer works since
there is no “final timestep” to start from. We’ll need another approach to policy evaluation.

The Bellman consistency equations (Theorem 2.7) yield a system of |𝒮| equations we can solve
to evaluate a deterministic policy exactly. For a faster approximate solution, we can iterate
the policy’s Bellman operator, since we know that it has a unique fixed point at the true value
function.
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2.4.3.1 Matrix inversion for deterministic policies

Note that when the policy 𝜋 is deterministic, the actions can be determined from the states,
and so we can chop off the action dimension for the rewards and state transitions:

𝑟𝜋 ∈ ℝ|𝒮| 𝑃 𝜋 ∈ [0, 1]|𝒮|×|𝒮| 𝑃0 ∈ [0, 1]|𝒮|

𝜋 ∈ 𝒜|𝒮| 𝑉 𝜋 ∈ ℝ|𝒮| 𝑄𝜋 ∈ ℝ|𝒮|×|𝒜|.

For 𝑃 𝜋, we’ll treat the rows as the states and the columns as the next states. Then 𝑃 𝜋
𝑠,𝑠′ is

the probability of transitioning from state 𝑠 to state 𝑠′ under policy 𝜋.

Example 2.8 (Tidying MDP). The tabular MDP from ex. 2.3 has |𝒮| = 2 and |𝒜| = 2. Let’s
write down the quantities for the policy 𝜋 that tidies if and only if the room is messy:

𝑟𝜋 = [1
0] , 𝑃 𝜋 = [0.7 0.3

1 0 ] , 𝑃0 = [1
0]

We’ll see how to evaluate this policy in the next section.

The Bellman consistency equation for a deterministic policy can be written in tabular notation
as

𝑉 𝜋 = 𝑟𝜋 + 𝛾𝑃 𝜋𝑉 𝜋.

(Unfortunately, this notation doesn’t simplify the expression for 𝑄𝜋.) This system of equations
can be solved with a matrix inversion:

𝑉 𝜋 = (𝐼 − 𝛾𝑃 𝜋)−1𝑟𝜋. (2.36)

Exercise 2.9 (Matrix invertibility). Note we’ve assumed that 𝐼 − 𝛾𝑃 𝜋 is invertible. Can you
see why this is the case? (Recall that a linear operator, i.e. a square matrix, is invertible if
and only if its null space is trivial; that is, it doesn’t map any nonzero vector to zero. Show
that 𝐼 − 𝛾𝑃 𝜋 maps any nonzero vector to another nonzero vector.)

Example 2.9 (Tidying policy evaluation). Let’s use the same policy 𝜋 that tidies if and only
if the room is messy. Setting 𝛾 = 0.95, we must invert

𝐼 − 𝛾𝑃 𝜋 = [1 − 0.95 × 0.7 −0.95 × 0.3
−0.95 × 1 1 − 0.95 × 0] = [0.335 −0.285

−0.95 1 ] .
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The inverse to two decimal points is

(𝐼 − 𝛾𝑃 𝜋)−1 = [15.56 4.44
14.79 5.21] .

Thus the value function is

𝑉 𝜋 = (𝐼 − 𝛾𝑃 𝜋)−1𝑟𝜋 = [15.56 4.44
14.79 5.21] [1

0] = [15.56
14.79] .

Let’s sanity-check this result. Since rewards are at most 1, the maximum cumulative return of
a trajectory is at most 1/(1 − 𝛾) = 20. We see that the value function is indeed slightly lower
than this.

Array([15.56419, 14.78598], dtype=float32)

2.4.3.2 Iterative policy evaluation

The matrix inversion above takes roughly 𝑂(|𝒮|3) time. It also only works for deterministic
policies. Can we trade off the requirement of finding the exact value function for a faster
approximate algorithm that will also extend to stochastic policies?

Let’s use the Bellman operator to define an iterative algorithm for computing the value function.
We’ll start with an initial guess 𝑣(0) with elements in [0, 1/(1−𝛾)] and then iterate the Bellman
operator:

𝑣(𝑡+1) = 𝒥𝜋(𝑣(𝑡)),

i.e. 𝑣(𝑡) = (𝒥𝜋)(𝑡)(𝑣(0)). Note that each iteration takes 𝑂(|𝒮|2) time for the matrix-vector
multiplication.

Then, as we showed in eq. 2.35, by the Banach fixed-point theorem:

‖𝑣(𝑡) − 𝑉 𝜋‖∞ ≤ 𝛾𝑡‖𝑣(0) − 𝑉 𝜋‖∞.

Array([15.564166, 14.785956], dtype=float32)
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Remark 2.9 (Convergence of iterative policy evaluation). How many iterations do we need for
an 𝜖-accurate estimate? We can work backwards to solve for 𝑡 (note that log 𝛾 < 0):

𝛾𝑡‖𝑣(0) − 𝑉 𝜋‖∞ ≤ 𝜖

𝑡 ≥ log(𝜖/‖𝑣(0) − 𝑉 𝜋‖∞)
log 𝛾

= log(‖𝑣(0) − 𝑉 𝜋‖∞/𝜖)
log(1/𝛾) ,

and so the number of iterations required for an 𝜖-accurate estimate is

𝑇 = 𝑂 ( 1
1 − 𝛾 log ( 1

𝜖(1 − 𝛾))) .

Note that we’ve applied the inequalities ‖𝑣(0) − 𝑉 𝜋‖∞ ≤ 1/(1 − 𝛾) and log(1/𝑥) ≥ 1 − 𝑥.

2.4.4 Optimality

Now let’s move on to solving for an optimal policy in the infinite-horizon case. As in def. 2.11,
an optimal policy 𝜋⋆ is one that does at least as well as any other policy in all situations.
That is, for all policies 𝜋, times ℎ ∈ ℕ, and initial trajectories 𝜏≤ℎ = (𝑠0, 𝑎0, 𝑟0, … , 𝑠ℎ),

𝔼
𝜏∼𝜌𝜋⋆

[𝑟ℎ + 𝛾𝑟ℎ+1 + 𝛾2𝑟ℎ+2 + ⋯ ∣ 𝜏≤ℎ]

≥ 𝔼
𝜏∼𝜌𝜋

[𝑟ℎ + 𝛾𝑟ℎ+1 + 𝛾2𝑟ℎ+2 + ⋯ ∣ 𝜏≤ℎ]
(2.37)

Once again, all optimal policies share the same optimal value function 𝑉 ⋆, and the greedy
policy with respect to this value function is optimal.

Exercise 2.10 (The greedy optimal policy). Verify this by modifying the proof Theorem 2.6
from the finite-horizon case.

So how can we compute such an optimal policy? We can’t use the backwards DP approach
from the finite-horizon case fig. 2.13 since there’s no “final timestep” to start from. Instead,
we’ll exploit the fact that the Bellman consistency equation eq. 2.29 for the optimal value
function doesn’t depend on any policy:

𝑉 ⋆(𝑠) = max
𝑎

[𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑉 ⋆(𝑠′).] (2.38)
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As before, thinking of the r.h.s. of eq. 2.38 as an operator on value functions gives the Bellman
optimality operator

[𝒥⋆(𝑣)](𝑠) = max
𝑎

[𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑣(𝑠′)] (2.39)

2.4.4.1 Value iteration

Since the optimal policy is still a policy, our result that the Bellman operator is a contracting
map still holds, and so we can repeatedly apply this operator to converge to the optimal value
function! This algorithm is known as value iteration.

Array([15.564166, 14.785956], dtype=float32)

Note that the runtime analysis for an 𝜖-optimal value function is exactly the same as sec. 2.4.3.2!
This is because value iteration is simply the special case of applying iterative policy evaluation
to the optimal value function.

As the final step of the algorithm, to return an actual policy ̂𝜋, we can simply act greedily
with respect to the final iteration 𝑣(𝑇 ) of our above algorithm:

̂𝜋(𝑠) = arg max
𝑎

[𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑣(𝑇 )(𝑠′)] . (2.40)

We must be careful, though: the value function of this greedy policy, 𝑉 �̂�, is not the same as
𝑣(𝑇 ), which need not even be a well-defined value function for some policy!

The bound on the policy’s quality is actually quite loose: if ‖𝑣(𝑇 ) − 𝑉 ⋆‖∞ ≤ 𝜖, then the greedy
policy ̂𝜋 satisfies ‖𝑉 �̂� − 𝑉 ⋆‖∞ ≤ 2𝛾

1−𝛾 𝜖, which might potentially be very large.

Theorem 2.9 (Greedy policy value worsening).

‖𝑉 �̂� − 𝑉 ⋆‖∞ ≤ 2𝛾
1 − 𝛾 ‖𝑣 − 𝑉 ⋆‖∞

where ̂𝜋(𝑠) = arg max𝑎 𝑞(𝑠, 𝑎) is the greedy policy with respect to

𝑞(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑣(𝑠′).
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Proof. We first have

𝑉 ⋆(𝑠) − 𝑉 �̂�(𝑠) = 𝑄⋆(𝑠, 𝜋⋆(𝑠)) − 𝑄�̂�(𝑠, ̂𝜋(𝑠))
= [𝑄⋆(𝑠, 𝜋⋆(𝑠)) − 𝑄⋆(𝑠, ̂𝜋(𝑠))] + [𝑄⋆(𝑠, ̂𝜋(𝑠)) − 𝑄�̂�(𝑠, ̂𝜋(𝑠))].

Let us bound these two quantities separately.

For the first quantity, note that by the definition of ̂𝜋, we have

𝑞(𝑠, ̂𝜋(𝑠)) ≥ 𝑞(𝑠, 𝜋⋆(𝑠)).

Let’s add 𝑞(𝑠, ̂𝜋(𝑠)) − 𝑞(𝑠, 𝜋⋆(𝑠)) ≥ 0 to the first term to get

𝑄⋆(𝑠, 𝜋⋆(𝑠)) − 𝑄⋆(𝑠, ̂𝜋(𝑠)) ≤ [𝑄⋆(𝑠, 𝜋⋆(𝑠)) − 𝑞(𝑠, 𝜋⋆(𝑠))] + [𝑞(𝑠, ̂𝜋(𝑠)) − 𝑄⋆(𝑠, ̂𝜋(𝑠))]
= 𝛾 𝔼

𝑠′∼𝑃(𝑠,𝜋⋆(𝑠))
[𝑉 ⋆(𝑠′) − 𝑣(𝑠′)] + 𝛾 𝔼

𝑠′∼𝑃(𝑠,�̂�(𝑠))
[𝑣(𝑠′) − 𝑉 ⋆(𝑠′)]

≤ 2𝛾‖𝑣 − 𝑉 ⋆‖∞.

The second quantity is bounded by

𝑄⋆(𝑠, ̂𝜋(𝑠)) − 𝑄�̂�(𝑠, ̂𝜋(𝑠)) = 𝛾 𝔼
𝑠′∼𝑃(𝑠,�̂�(𝑠))

[𝑉 ⋆(𝑠′) − 𝑉 �̂�(𝑠′)]

≤ 𝛾‖𝑉 ⋆ − 𝑉 �̂�‖∞

and thus

‖𝑉 ⋆ − 𝑉 �̂�‖∞ ≤ 2𝛾‖𝑣 − 𝑉 ⋆‖∞ + 𝛾‖𝑉 ⋆ − 𝑉 �̂�‖∞

‖𝑉 ⋆ − 𝑉 �̂�‖∞ ≤ 2𝛾‖𝑣 − 𝑉 ⋆‖∞
1 − 𝛾 .

So in order to compensate and achieve ‖𝑉 �̂� − 𝑉 ⋆‖ ≤ 𝜖, we must have

‖𝑣(𝑇 ) − 𝑉 ⋆‖∞ ≤ 1 − 𝛾
2𝛾 𝜖.

This means, using Remark 2.9, we need to run value iteration for

𝑇 = 𝑂 ( 1
1 − 𝛾 log ( 𝛾

𝜖(1 − 𝛾)2 ))

iterations to achieve an 𝜖-accurate estimate of the optimal value function.
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Table 2.4: Two action-value functions that result in the same greedy policy

(a) One Q-function

𝑠 𝑎 = 0 𝑎 = 1
A 0.1 0.2
B 0.8 0.9
C 0.4 0.5

(b) Another Q-function

𝑠 𝑎 = 0 𝑎 = 1
A 0.1 0.3
B 0.8 1
C 0.4 0.6

2.4.4.2 Policy iteration

Can we mitigate this “greedy worsening”? What if instead of approximating the optimal value
function and then acting greedily by it at the very end, we iteratively improve the policy and
value function together? This is the idea behind policy iteration. In each step, we simply
set the policy to act greedily with respect to its own value function.

Array([[1., 0.],
[0., 1.]], dtype=float32)

Although PI appears more complex than VI, we’ll use Theorem 2.8 to show convergence. This
will give us the same runtime bound as value iteration and iterative policy evaluation for
an 𝜖-optimal value function (Remark 2.9), although in practice, PI often converges in fewer
iterations. Why so? Intuitively, by iterating through actual policies, we can “skip over”
different functions that represent the same policy, which value iteration might iterate through.
For a concrete example, suppose we have an MDP with three states 𝒮 = {A, B, C}. Compare
the two functions below:

These both map to the same greedy policy, so policy iteration would never iterate through
both of these functions, while value iteration might.

Theorem 2.10 (Policy Iteration runtime and convergence). The number of iterations required
for an 𝜖-accurate estimate of the optimal value function is

𝑇 = 𝑂 ( 1
1 − 𝛾 log ( 1

𝜖(1 − 𝛾))) .

Proof. This bound follows from the contraction property eq. 2.35:

‖𝑉 𝜋𝑡+1 − 𝑉 ⋆‖∞ ≤ 𝛾‖𝑉 𝜋𝑡 − 𝑉 ⋆‖∞.
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We’ll prove that the iterates of PI respect the contraction property by showing that the policies
improve monotonically:

𝑉 𝜋𝑡+1(𝑠) ≥ 𝑉 𝜋𝑡(𝑠).

Then we’ll use this to show 𝑉 𝜋𝑡+1(𝑠) ≥ [𝒥⋆(𝑉 𝜋𝑡)](𝑠). Note that

(𝑠) = max
𝑎

[𝑟(𝑠, 𝑎) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝑎)

𝑉 𝜋𝑡(𝑠′)]

= 𝑟(𝑠, 𝜋𝑡+1(𝑠)) + 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝜋𝑡+1(𝑠))

𝑉 𝜋𝑡(𝑠′)

Since [𝒥⋆(𝑉 𝜋𝑡)](𝑠) ≥ 𝑉 𝜋𝑡(𝑠), we then have

𝑉 𝜋𝑡+1(𝑠) − 𝑉 𝜋𝑡(𝑠) ≥ 𝑉 𝜋𝑡+1(𝑠) − 𝒥⋆(𝑉 𝜋𝑡)(𝑠)
= 𝛾 𝔼

𝑠′∼𝑃(𝑠,𝜋𝑡+1(𝑠))
[𝑉 𝜋𝑡+1(𝑠′) − 𝑉 𝜋𝑡(𝑠′)] . (2.41)

But note that the expression being averaged is the same as the expression on the l.h.s. with
𝑠 replaced by 𝑠′. So we can apply the same inequality recursively to get

𝑉 𝜋𝑡+1(𝑠) − 𝑉 𝜋𝑡(𝑠) ≥ 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝜋𝑡+1(𝑠))

[𝑉 𝜋𝑡+1(𝑠′) − 𝑉 𝜋𝑡(𝑠′)]

≥ 𝛾2 𝔼
𝑠′∼𝑃(𝑠,𝜋𝑡+1(𝑠))

𝑠″∼𝑃(𝑠′,𝜋𝑡+1(𝑠′))

[𝑉 𝜋𝑡+1(𝑠″) − 𝑉 𝜋𝑡(𝑠″)]

≥ ⋯

which implies that 𝑉 𝜋𝑡+1(𝑠) ≥ 𝑉 𝜋𝑡(𝑠) for all 𝑠 (since the r.h.s. converges to zero). We can
then plug this back into eq. 2.41 to get the desired result:

𝑉 𝜋𝑡+1(𝑠) − 𝒥⋆(𝑉 𝜋𝑡)(𝑠) = 𝛾 𝔼
𝑠′∼𝑃(𝑠,𝜋𝑡+1(𝑠))

[𝑉 𝜋𝑡+1(𝑠′) − 𝑉 𝜋𝑡(𝑠′)]

≥ 0
𝑉 𝜋𝑡+1(𝑠) ≥ [𝒥⋆(𝑉 𝜋𝑡)](𝑠)

This means we can now apply the Bellman convergence result eq. 2.35 to get

‖𝑉 𝜋𝑡+1 − 𝑉 ⋆‖∞ ≤ ‖𝒥⋆(𝑉 𝜋𝑡) − 𝑉 ⋆‖∞ ≤ 𝛾‖𝑉 𝜋𝑡 − 𝑉 ⋆‖∞.
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2.5 Key takeaways

Markov decision processes (MDPs) are a framework for sequential decision making under
uncertainty. They consist of a state space 𝒮, an action space 𝒜, an initial state distribution
𝑃0 ∈ △(𝒮), a transition function 𝑃(𝑠′ ∣ 𝑠, 𝑎), and a reward function 𝑟(𝑠, 𝑎). They can be finite-
horizon (ends after 𝐻 timesteps) or infinite-horizon (where rewards scale by 𝛾 ∈ (0, 1) at each
timestep). Our goal is to find a policy 𝜋 that maximizes expected total reward. Policies can be
deterministic or stochastic, history-dependent or history-independent, stationary or
time-dependent. A policy induces a distribution over trajectories.

We can evaluate a policy by computing its value function 𝑉 𝜋(𝑠), which is the expected total
reward starting from state 𝑠 and following policy 𝜋. We can also compute the state-action
value function 𝑄𝜋(𝑠, 𝑎), which is the expected total reward starting from state 𝑠, taking
action 𝑎, and then following policy 𝜋. In the finite-horizon setting, these also depend on the
timestep ℎ.

The Bellman consistency equation is an equation that the value function must satisfy. It
can be used to solve for the value functions exactly. Thinking of the r.h.s. of this equation as
an operator on value functions gives the Bellman operator.

In the finite-horizon setting, we can compute the optimal policy using dynamic program-
ming. In the infinite-horizon setting, we can compute the optimal policy using value itera-
tion or policy iteration.

2.6 Bibliographic notes and further reading

The MDP framework can be traced to Puterman (1994). The proof of Theorem 2.6 can be
found in A. Agarwal et al. (2022).

MDPs are the most common framework used throughout RL. See sec. 1.4 for a list of popular
textbooks on RL.

In most real-world problems, we don’t observe the entire state of the environment. Instead,
we only get access to what our senses can perceive. This is what makes games like hide-and-
seek enjoyable. We can model such environment as partially observed MDPs (POMDPs).
Powell (2022) presents a unified framework for sequential decision problems.

Another important bandit algorithm is Gittins indices (Gittins, 2011). The derivation of
this algorithm is out of scope of this course.
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3 Linear Quadratic Regulators

3.1 Introduction

In Chapter 2, we considered decision problems with finitely many states and actions. However,
in many applications, states and actions may take on continuous values. For example, consider
autonomous driving, controlling a robot’s joints, and automated manufacturing. How can we
teach computers to solve these kinds of problems? This is the task of continuous control.

(a) Solving a Rubik’s Cube with a robot hand
(a) Boston Dynamics’s Spot robot

Aside from the change in the state and action spaces, the general problem setup remains the
same: we seek to construct an optimal policy that outputs actions to solve the desired task. We
will see that many key ideas and algorithms, in particular dynamic programming algorithms
(sec. 2.3.2), carry over to this new setting.

This chapter introduces a fundamental tool to solve a simple class of continuous control prob-
lems: the linear quadratic regulator (LQR). We can use the LQR model as a building
block for solving more complex problems.

Remark 3.1 (Control vs RL). Control theory is often considered a distinct, though related,
field from RL. In both fields, the central aim is to solve sequential decision problems, i.e. find
a strategy for taking actions in the environment in order to achieve some goal that is measured
by a scalar signal. The two fields arose rather independently and with rather different problem
settings, and use different mathematical terminology as a result.
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Control theory has close ties to electrical and mechanical engineering. Control theorists typ-
ically work in a continuous-time setting in which the dynamics can be described by systems
of differential equations. The goal is typically to ensure stability of the system and minimize
some notion of “cost” (e.g. wasted energy in controlling the system). Rather than learning
the system from data, one typically supposes a particular structure of the environment and
solves for the optimal controller using analytical or numerical methods. As such, most control
theory algorithms, like the ones we will explore in this chapter, are planning methods that do
not require learning from data.

3.2 Optimal control

Let’s first look at a simple example of a continuous control problem:

Example 3.1 (CartPole). Try to balance a pencil on its point on a flat surface. It’s much
more difficult than it may first seem: the position of the pencil varies continuously, and the
state transitions governing the system, i.e. the laws of physics, are highly complex. This task
is equivalent to the classic control problem known as CartPole:

Figure 3.3: A snapshot of the cart pole environment

The state 𝑥 ∈ ℝ4 can be described by four real variables:

1. the position of the cart;
2. the velocity of the cart;
3. the angle of the pole;
4. the angular velocity of the pole.

We can control the cart by applying a horizontal force 𝑢 ∈ ℝ.

Goal: Stabilize the cart around an ideal state and action (𝑥⋆, 𝑢⋆).

A continuous control environment is a special case of an MDP (def. 2.4). Recall that a finite-
horizon MDP
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ℳ = (𝒮, 𝒜, 𝑃0, 𝑃 , 𝑟, 𝐻). (3.1)

is defined by its state space 𝒮, action space 𝒜, initial state distribution 𝑃0, state transitions 𝑃 ,
reward function 𝑟, and time horizon 𝐻. These each have equivalents in the control setting.

Definition 3.1 (Continuous control environment). A continuous control environment is de-
fined by the following components:

• The state and action spaces 𝒮, 𝒜 are continuous rather than finite. That is, 𝒮 ⊆ ℝ𝑛𝑥 and
𝒜 ⊆ ℝ𝑛𝑢 , where 𝑛𝑥 and 𝑛𝑢 are the number of coordinates required to specify a single
state or action respectively. For example, in robotic control, 𝑛𝑥 might be the number of
sensors and 𝑛𝑢 might be the number of actuators on the robot.

• 𝑃0 ∈ △(𝒮) denotes the initial state distribution.
• We call the state transitions the dynamics of the system and denote them by 𝑓 :

𝑥ℎ+1 = 𝑓ℎ(𝑥ℎ, 𝑢ℎ, 𝑤ℎ), (3.2)

where 𝑤ℎ denotes noise drawn from the distribution 𝜈ℎ ∈ △(ℝ𝑛𝑤). We allow the dynam-
ics to vary at each timestep ℎ.

• Instead of maximizing the reward function, we seek to minimize the cost function
𝑐ℎ ∶ 𝒮 × 𝒜 → ℝ. Often, the cost function describes how far away we are from a target
state-action pair (𝑥⋆, 𝑢⋆).

• The agent acts over a finite time horizon 𝐻 ∈ ℕ.

Together, these constitute a description of the environment

ℳ = (𝒮, 𝒜, 𝑃0, 𝑓, 𝜈, 𝑐, 𝐻). (3.3)

Definition 3.2 (Optimal control). For a continuous control environment ℳ, the optimal
control problem is to compute a policy 𝜋 that minimizes the total cost

min
𝜋0,…,𝜋𝐻−1∶𝒮→𝒜

𝔼 [
𝐻−1
∑
ℎ=0

𝑐ℎ(𝑥ℎ, 𝑢ℎ)]

where 𝑥ℎ+1 = 𝑓ℎ(𝑥ℎ, 𝑢ℎ, 𝑤ℎ),
𝑢ℎ = 𝜋ℎ(𝑥ℎ)
𝑥0 ∼ 𝑃0
𝑤ℎ ∼ 𝜈ℎ.

(3.4)
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In this chapter, we will only consider deterministic, time-dependent policies

𝜋 = (𝜋0, … , 𝜋𝐻−1) where 𝜋ℎ ∶ 𝒮 → 𝒜 for each ℎ ∈ [𝐻]. (3.5)

To make the explicit conditioning more concise, we let 𝜌𝜋 denote the trajectory distribution
induced by the policy 𝜋. That is, if we sample initial states from 𝑃0, act according to 𝜋, and
transition according to the dynamics 𝑓 , the resulting distribution over trajectories is 𝜌𝜋. Put
another way, the procedure for sampling from 𝜌𝜋 is to take rollouts in the environment using
𝜋.

Theorem 3.1 (Trajectory distributions). Let 𝜋 = {𝜋0, … , 𝜋𝐻−1} be a deterministic, time-
dependent policy. We include states 𝑥ℎ, actions 𝑢ℎ, and noise terms 𝑤ℎ in the trajectory.
Then the density of a trajectory 𝜏 = (𝑥0, 𝑢0, 𝑤0, … , 𝑤𝐻−2, 𝑥𝐻−1, 𝑢𝐻−1) can be expressed as
follows:

𝜌𝜋(𝜏) ∶= 𝑃0(𝑥0) × 1 {𝑢0 = 𝜋0(𝑥0)}
× 𝜈(𝑤0) × 1 {𝑥1 = 𝑓(𝑥0, 𝑢0, 𝑤0)}
× ⋯
× 𝜈(𝑤𝐻−2) × 1 {𝑥𝐻−1 = 𝑓(𝑥𝐻−2, 𝑢𝐻−2, 𝑤𝐻−2)} × 1 {𝑢𝐻−1 = 𝜋𝐻−1(𝑥𝐻−1)}

= 𝑃0(𝑥0)1 {𝑢0 = 𝜋0(𝑥0)}
𝐻−1
∏
ℎ=1

𝜈(𝑤ℎ−1)1 {𝑥ℎ = 𝑓(𝑥ℎ−1, 𝑢ℎ−1, 𝑤ℎ−1)} 1 {𝑢ℎ = 𝜋ℎ(𝑥ℎ)}

(3.6)

This expression may seem intimidating, but on closer examination, it simply uses indicator
variables to enforce that only valid trajectories have nonzero probability. Henceforth, we will
write 𝜏 ∼ 𝜌𝜋 instead of the explicit conditioning in eq. 3.4.

As in Chapter 2, value functions will be crucial for constructing the optimal policy via dy-
namic programming.

Definition 3.3 (Value functions in LQR). Given a policy � = (𝜋0, … , 𝜋𝐻−1), we can define
its value function 𝑉 𝜋

ℎ ∶ 𝒮 → ℝ at time ℎ ∈ [𝐻] as the cost-to-go incurred by that policy in
expectation:

𝑉 𝜋
ℎ (𝑥) = 𝔼

𝜏∼𝜌𝜋
[

𝐻−1
∑
ℎ′=ℎ

𝑐(𝑥ℎ′ , 𝑢ℎ′) ∣ 𝑥ℎ = 𝑥] (3.7)
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Definition 3.4 (Q function in LQR). The Q-function additionally conditions on the first
action we take:

𝑄𝜋
ℎ(𝑥, 𝑢) = 𝔼

𝜏∼𝜌𝜋
[

𝐻−1
∑
ℎ′=ℎ

𝑐(𝑥ℎ′ , 𝑢ℎ′) ∣ (𝑥ℎ, 𝑢ℎ) = (𝑥, 𝑢)] (3.8)

Since we use a cost function 𝑐 instead of a reward function 𝑟, the best policies in a given state
(or state-action pair) are the ones with smaller 𝑉 𝜋 and 𝑄𝜋.

3.2.1 A first attempt: Discretization

Can we solve this problem using tools from the finite MDP setting? If 𝒮 and 𝒜 were finite,
then we could use dynamic programming (fig. 2.13) to compute the optimal policy exactly.
This inspires us to try discretizing the problem.

Suppose 𝒮 and 𝒜 are bounded, that is, max𝑥∈𝒮 ‖𝑥‖ ≤ 𝐵𝑥 and max𝑢∈𝒜 ‖𝑢‖ ≤ 𝐵𝑢. To make
𝒮 and 𝒜 finite, let’s choose some small positive 𝜖, and simply round each coordinate to the
nearest multiple of 𝜖. For example, if 𝜖 = 0.01, then we round each element of 𝑥 and 𝑢 to two
decimal spaces.

What goes wrong? The discretized ̃𝒮 and 𝒜 may be finite, but for all practical purposes, they
are far too large: we must divide each dimension into intervals of length 𝜀, resulting in the
state and action spaces

| ̃𝒮| = (𝐵𝑥/𝜀)𝑛𝑥 and |𝒜| = (𝐵𝑢/𝜀)𝑛𝑢 . (3.9)

To get a sense of how quickly this grows, consider 𝜀 = 0.01, 𝑛𝑥 = 𝑛𝑢 = 4, and 𝐵𝑥 = 𝐵𝑢 = 1.
Then the number of elements in the transition matrix would be | ̃𝒮|2|𝒜| = (1004)2(1004) = 1024!
(That’s a million million million million.)

What properties of the problem could we instead make use of? Note that by discretizing
the state and action spaces, we implicitly assumed that rounding each state or action vector
by some tiny amount 𝜀 wouldn’t change the behaviour of the system by much; namely, that
the cost and dynamics were relatively continuous. Can we use this continuous structure in
other ways? Yes! We will see that the linear quadratic regulator makes better use of this
assumption.

47



3.3 The Linear Quadratic Regulator

The optimal control problem def. 3.2 is quite general. Is there a relevant simplification that we
can solve, where the dynamics 𝑓 and cost function 𝑐 have some special structure? The linear
quadratic regulator (LQR) is a special case of a continuous control environment (def. 3.1)
where the dynamics 𝑓 are linear and the cost function 𝑐 is an upward-curved quadratic. We
also assume that the environment is time-invariant. This is an important environment class
in which the optimal policy and value function can be solved for exactly.

Definition 3.5 (Linear quadratic regulator). The dynamics 𝑓 are specified by the matrices
𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥 and 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢 :

𝑥ℎ+1 = 𝑓(𝑥ℎ, 𝑢ℎ, 𝑤ℎ) = 𝐴𝑥ℎ + 𝐵𝑢ℎ + 𝑤ℎ (3.10)

for all ℎ ∈ [𝐻 − 1], where 𝑤ℎ ∼ 𝒩(0, 𝜎2)𝐼 .

The cost function is specified by the symmetric positive definite matrices 𝑄 ∈ ℝ𝑛𝑥×𝑛𝑥 and
𝑅 ∈ ℝ𝑛𝑢×𝑛𝑢 :

𝑐(𝑥ℎ, 𝑢ℎ) = 𝑥⊤
ℎ 𝑄𝑥ℎ + 𝑢⊤

ℎ 𝑅𝑢ℎ (3.11)

for all ℎ ∈ [𝐻]. We use the same letter as the Q-function (def. 3.4); the context should make
it clear which is intended.

Remark 3.2 (Properties of LQR). Recall that 𝑤ℎ is a noise term that makes the dynamics
random. By setting its covariance matrix to 𝜎2𝐼 , we mean that there is Gaussian noise of
standard deviation 𝜎 added independently to each coordinate of the state. Setting 𝜎 = 0 gives
us deterministic state transitions. Surprisingly, the optimal policy doesn’t depend on the
amount of noise, although the optimal value function and Q-function do. (We will show this
in a later derivation.)

The LQR cost function attempts to stabilize the state and action to (𝑥⋆, 𝑢⋆) = (0, 0). We
require 𝑄 and 𝑅 to both be positive definite matrices so that 𝑐 has a unique minimum. We
can furthermore assume without loss of generality that they are both symmetric (see exercise
below). This greatly simplifies later computations.

Exercise 3.1 (Symmetric 𝑄 and 𝑅). Show that replacing 𝑄 and 𝑅 with (𝑄 + 𝑄⊤)/2 and
(𝑅 + 𝑅⊤)/2 (which are symmetric) yields the same cost function.
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Example 3.2 (Double integrator). Consider a ball moving along a line. Let’s first frame this
as a continuous-time dynamical system, which is often more natural for physical phenomena,
and then discretize it to solve it with the discrete-time LQR.

From elementary physics, the ball’s velocity ̇𝑝(𝑡) is the instantaneous change in its position,
and its acceleration ̈𝑝(𝑡) is the instantaneous change in its velocity. Suppose we can apply a
force 𝑢(𝑡) to accelerate the ball. This dynamical system is known as the double integrator.
Our goal is to move the ball so that it is stationary at position 𝑝⋆ = 0.

How would we frame this as an LQR problem? The effect of the control on the ball’s position
is nonlinear. However, if we define our state as including both the position and velocity, i.e.

𝑥(𝑡) = (𝑝(𝑡)
̇𝑝(𝑡)) , (3.12)

then we end up with the following first-order linear differential equation:

̇𝑥(𝑡) = (0 1
0 0) 𝑥(𝑡) + (0

1) 𝑢(𝑡). (3.13)

There are many ways to turn this into a discrete-time problem. The simplest way is the
(forward) Euler method, where we choose a small step size Δ𝑡, and explicitly use the limit
definition of the derivative to obtain

𝑥(𝑡 + Δ𝑡) ≈ 𝑥(𝑡) + Δ𝑡 ⋅ ̇𝑥(𝑡). (3.14)

Applying this to eq. 3.13 gives the system

𝑥ℎ+1 = (1 Δ𝑡
0 1 ) 𝑥ℎ + ( 0

Δ𝑡) 𝑢ℎ, (3.15)

or explicitly in terms of the position and velocity,

𝑝ℎ+1 = 𝑝ℎ + Δ𝑡 ⋅ ̇𝑝ℎ,
̇𝑝ℎ+1 = ̇𝑝ℎ + Δ𝑡 ⋅ 𝑢ℎ. (3.16)

We see that the LQR control smoothly controls the position of the ball.
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(a) The state and control input over time.
(b) The trajectory of 𝑥ℎ plotted in the phase space.

Figure 3.4: Visualization of a double integrator LQR system.

3.4 Optimality and the Riccati Equation

In this section, we’ll compute the optimal value function 𝑉 ⋆
ℎ , Q-function 𝑄⋆

ℎ, and policy 𝜋⋆
ℎ for

an LQR problem (def. 3.5) using dynamic programming. The algorithm is identical to the
one in sec. 2.3.1, except here states and actions are vector-valued. Recall the definition of the
optimal value function:

Definition 3.6 (Optimal value function in LQR). The optimal value function is the one
that, at any time and in any state, achieves minimum cost across all policies 𝜋 that are
history-independent, time-dependent, and deterministic.

𝑉 ⋆
ℎ (𝑥) = min

𝜋
𝑉 𝜋

ℎ (𝑥)

= min
𝜋 𝔼

𝜏∼𝜌𝜋
[

𝐻−1
∑
ℎ′=ℎ

(𝑥⊤
ℎ′𝑄𝑥ℎ′ + 𝑢⊤

ℎ′𝑅𝑢ℎ′) ∣ 𝑥ℎ = 𝑥]
(3.17)

Definition 3.7 (Optimal Q function in LQR). The optimal Q-function is defined in the same
way, conditioned on the starting state-action pair:

𝑄⋆
ℎ(𝑥, 𝑢) = min

𝜋
𝑄𝜋

ℎ(𝑥, 𝑢)

= min
𝜋 𝔼 [

𝐻−1
∑
ℎ′=ℎ

(𝑥⊤
ℎ′𝑄𝑥ℎ′ + 𝑢⊤

ℎ′𝑅𝑢ℎ′) ∣ 𝑥ℎ = 𝑥, 𝑢ℎ = 𝑢]
(3.18)

Remark 3.3 (Minimum over all policies). By Theorem 2.6, we do not lose any generality by only
considering policies that are history-independent, time-dependent, and deterministic. That is,
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the optimal policy within this class is also globally optimal across all policies, in the sense that
it achieves lower cost for any given trajectory prefix.

The solution has very simple structure: 𝑉 ⋆
ℎ and 𝑄⋆

ℎ are upward-curved quadratics and 𝜋⋆
ℎ is

linear and furthermore does not depend on the amount of noise!

Theorem 3.2 (Optimal value function in LQR is an upward-curved quadratic). At each
timestep ℎ ∈ [𝐻],

𝑉 ⋆
ℎ (𝑥) = 𝑥⊤𝑃ℎ𝑥 + 𝑝ℎ (3.19)

for some symmetric, positive-definite 𝑛𝑥 × 𝑛𝑥 matrix 𝑃ℎ and scalar 𝑝ℎ ∈ ℝ.

Theorem 3.3 (Optimal policy in LQR is linear). At each timestep ℎ ∈ [𝐻],

𝜋⋆
ℎ(𝑥) = −𝐾ℎ𝑥 (3.20)

for some 𝐾ℎ ∈ ℝ𝑛𝑢×𝑛𝑥. (The negative is due to convention.)

The construction (and inductive proof) proceeds similarly to the one in the MDP setting
(sec. 2.3.1). We leave the full proof, which involves a significant amount of linear algebra, to
sec. B.1.

Figure 3.5: Illustrating a dynamic programming algorithm for computing the optimal policy
in an LQR environment.

Here we provide the concrete 𝑃ℎ, 𝑝ℎ, and 𝐾ℎ used to compute the quantities above.

Definition 3.8 (Riccati equation). It turns out that the matrices 𝑃0, … , 𝑃𝐻−1 used to define
𝑉 ⋆ obey a recurrence relation known as the Riccati equation:

𝑃ℎ = 𝑄 + 𝐴⊤𝑃ℎ+1𝐴 − 𝐴⊤𝑃ℎ+1𝐵(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)−1𝐵⊤𝑃ℎ+1𝐴, (3.21)

where 𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥 and 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢 are the matrices used to define the dynamics 𝑓 and
𝑄 ∈ ℝ𝑛𝑥×𝑛𝑥 and 𝑅 ∈ ℝ𝑛𝑢×𝑛𝑢 are the matrices used to define the cost function 𝑐 (def. 3.5).
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The scalars 𝑝ℎ obey the recurrence relation

𝑝ℎ = Tr(𝜎2𝑃ℎ+1) + 𝑝ℎ+1 (3.22)

and the matrices 𝐾0, … , 𝐾𝐻−1 for defining the policy satisfy

𝐾ℎ = (𝑅 + 𝐵⊤𝑃ℎ+1𝐵)−1𝐵⊤𝑃ℎ+1𝐴. (3.23)

By setting 𝑃𝐻 = 0 and 𝑝𝐻 = 0,

Definition 3.9 (Dynamic programming in LQR). Let 𝐴, 𝐵, 𝑄, 𝑅 be the matrices that define
the LQR problem, and let 𝜎2 be the variance of the noise in the dynamics (def. 3.5).

1. Initialize 𝑃𝐻 = 0, 𝑝𝐻 = 0.
2. For each ℎ = 𝐻 − 1, … , 0:

1. Compute 𝑃ℎ using the Riccati equation (def. 3.8) and 𝑝ℎ using eq. 3.22.
2. Compute 𝐾ℎ using eq. B.5.
3. These define the functions 𝑉 ⋆

ℎ and 𝜋⋆
ℎ by Theorem 3.2 and Theorem 3.3.

3.4.1 Expected state at time ℎ

Let’s consider how the state at time ℎ behaves when we act according to this optimal policy.
In the field of control theory, which is often used in high-stakes circumstances such as aviation
or architecture, it is important to understand the way the state evolves under the proposed
controls.

How can we compute the expected state at time ℎ when acting according to the optimal policy?
Let’s first express 𝑥ℎ in a cleaner way in terms of the history. Having linear dynamics makes
it easy to expand terms backwards in time:

𝑥ℎ = 𝐴𝑥ℎ−1 + 𝐵𝑢ℎ−1 + 𝑤ℎ−1
= 𝐴(𝐴𝑥ℎ−2 + 𝐵𝑢ℎ−2 + 𝑤ℎ−2) + 𝐵𝑢ℎ−1 + 𝑤ℎ−1
= ⋯

= 𝐴ℎ𝑥0 +
ℎ−1
∑
𝑖=0

𝐴𝑖(𝐵𝑢ℎ−𝑖−1 + 𝑤ℎ−𝑖−1).

(3.24)

Let’s consider the average state at this time, given all the past states and actions. Since we
assume that 𝔼[𝑤ℎ] = 0 (this is the zero vector in 𝑑 dimensions), when we take an expectation,
the 𝑤ℎ term vanishes due to linearity, and so we’re left with
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𝔼[𝑥ℎ ∣ 𝑥0∶(ℎ−1), 𝑢0∶(ℎ−1)] = 𝐴ℎ𝑥0 +
ℎ−1
∑
𝑖=0

𝐴𝑖𝐵𝑢ℎ−𝑖−1. (3.25)

Exercise 3.2 (Expected state). Show that if we choose actions according to the optimal policy
Lemma B.2, eq. 3.25 becomes

𝔼[𝑥ℎ ∣ 𝑥0, 𝑢𝑖 = 𝜋⋆
𝑖 (𝑥𝑖) ∀𝑖 ≤ ℎ] = (

ℎ−1
∏
𝑖=0

(𝐴 − 𝐵𝐾𝑖)) 𝑥0.

This introdces the quantity 𝐴−𝐵𝐾𝑖, which shows up frequently in control theory. For example,
one important question is: will 𝑥ℎ remain bounded, or will it go to infinity as time goes on?
To answer this, let’s imagine for simplicity that these 𝐾𝑖s are equal (call this matrix 𝐾).
Then the expression above becomes (𝐴 − 𝐵𝐾)ℎ𝑥0. Now consider the maximum eigenvalue
𝜆max of 𝐴 − 𝐵𝐾. If |𝜆max| > 1, then there’s some nonzero initial state ̄𝑥0, the corresponding
eigenvector, for which

lim
ℎ→∞

(𝐴 − 𝐵𝐾)ℎ ̄𝑥0 = lim
ℎ→∞

𝜆ℎ
max ̄𝑥0 = ∞.

Otherwise, if |𝜆max| < 1, then it’s impossible for your original state to explode as dramati-
cally.

3.5 Extensions

We’ve now formulated an optimal solution for the time-homogeneous LQR and computed the
expected state under the optimal policy. However, real world tasks rarely have such simple
dynamics, and we may wish to design more complex cost functions. In this section, we’ll
consider more general extensions of LQR where some of the assumptions we made above are
relaxed. Specifically, we’ll consider:

1. Time-dependency, where the dynamics and cost function might change depending on
the timestep.

2. General quadratic cost, where we allow for linear terms and a constant term.
3. Tracking a goal trajectory rather than aiming for a single goal state-action pair.

Combining these will allow us to use the LQR solution to solve more complex setups by taking
Taylor approximations of the dynamics and cost functions.
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3.5.1 Time-dependent dynamics and cost function

So far, we’ve considered the time-homogeneous case, where the dynamics and cost function stay
the same at every timestep. However, this might not always be the case. As an example, in
many sports, the rules and scoring system might change during an overtime period. To address
such tasks, we can loosen the time-homogeneous restriction, and consider the case where the
dynamics and cost function are time-dependent. Our analysis remains almost identical; in fact,
we can simply add a time index to the matrices 𝐴 and 𝐵 that determine the dynamics and
the matrices 𝑄 and 𝑅 that determine the cost.

The modified problem is now defined as follows:

Definition 3.10 (Time-dependent LQR).

min
𝜋0,…,𝜋𝐻−1

𝔼 [(
𝐻−1
∑
ℎ=0

(𝑥⊤
ℎ 𝑄ℎ𝑥ℎ) + 𝑢⊤

ℎ 𝑅ℎ𝑢ℎ) + 𝑥⊤
𝐻𝑄𝐻𝑥𝐻]

where 𝑥ℎ+1 = 𝑓ℎ(𝑥ℎ, 𝑢ℎ, 𝑤ℎ) = 𝐴ℎ𝑥ℎ + 𝐵ℎ𝑢ℎ + 𝑤ℎ
𝑥0 ∼ 𝜇0
𝑢ℎ = 𝜋ℎ(𝑥ℎ)
𝑤ℎ ∼ 𝒩(0, 𝜎2𝐼).

The derivation of the optimal value functions and the optimal policy remains almost exactly
the same, and we can modify the Riccati equation accordingly:

Definition 3.11 (Time-dependent Riccati Equation).

𝑃ℎ = 𝑄ℎ + 𝐴⊤
ℎ 𝑃ℎ+1𝐴ℎ − 𝐴⊤

ℎ 𝑃ℎ+1𝐵ℎ(𝑅ℎ + 𝐵⊤
ℎ 𝑃ℎ+1𝐵ℎ)−1𝐵⊤

ℎ 𝑃ℎ+1𝐴ℎ.

Note that this is just the time-homogeneous Riccati equation (def. 3.8), but with the time
index added to each of the relevant matrices.

Exercise 3.3 (Time dependent LQR proof). Walk through the proof in sec. 3.4 to verify that
we can simply add ℎ for the time-dependent case.

Additionally, by allowing the dynamics to vary across time, we gain the ability to locally
approximate nonlinear dynamics at each timestep. We’ll discuss this later in the chapter.
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3.5.2 More general quadratic cost functions

Our original cost function had only second-order terms with respect to the state and action,
incentivizing staying as close as possible to (𝑥⋆, 𝑢⋆) = (0, 0). We can also consider more general
quadratic cost functions that also have first-order terms and a constant term. Combining this
with time-dependent dynamics results in the following expression, where we introduce a new
matrix 𝑀ℎ for the cross term, linear coefficients 𝑞ℎ and 𝑟ℎ for the state and action respectively,
and a constant term 𝑐ℎ:

𝑐ℎ(𝑥ℎ, 𝑢ℎ) = (𝑥⊤
ℎ 𝑄ℎ𝑥ℎ + 𝑥⊤

ℎ 𝑀ℎ𝑢ℎ + 𝑢⊤
ℎ 𝑅ℎ𝑢ℎ) + (𝑥⊤

ℎ 𝑞ℎ + 𝑢⊤
ℎ 𝑟ℎ) + 𝑐ℎ. (3.26)

Similarly, we can also include a constant term 𝑣ℎ ∈ ℝ𝑛𝑥 in the dynamics. This is deterministic,
unlike the stochastic noise 𝑤ℎ:

𝑥ℎ+1 = 𝑓ℎ(𝑥ℎ, 𝑢ℎ, 𝑤ℎ) = 𝐴ℎ𝑥ℎ + 𝐵ℎ𝑢ℎ + 𝑣ℎ + 𝑤ℎ.

Exercise 3.4 (General cost function). Derive the optimal solution. You will need to slightly
modify the proof in sec. 3.4.

3.5.3 Tracking a predefined trajectory

Consider applying LQR to a task like autonomous driving, where the target state-action pair
changes over time. We might want the vehicle to follow a predefined trajectory of states
and actions (𝑥⋆

ℎ, 𝑢⋆
ℎ)𝐻−1

ℎ=0 . To express this as a control problem, we’ll need a corresponding
time-dependent cost function:

𝑐ℎ(𝑥ℎ, 𝑢ℎ) = (𝑥ℎ − 𝑥⋆
ℎ)⊤𝑄(𝑥ℎ − 𝑥⋆

ℎ) + (𝑢ℎ − 𝑢⋆
ℎ)⊤𝑅(𝑢ℎ − 𝑢⋆

ℎ).

Note that this punishes states and actions that are far from the intended trajectory. By
expanding out these multiplications, we can see that this is actually a special case of the more
general quadratic cost function above eq. 3.26:

𝑀ℎ = 0, 𝑞ℎ = −2𝑄𝑥⋆
ℎ, 𝑟ℎ = −2𝑅𝑢⋆

ℎ, 𝑐ℎ = (𝑥⋆
ℎ)⊤𝑄(𝑥⋆

ℎ) + (𝑢⋆
ℎ)⊤𝑅(𝑢⋆

ℎ).
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3.6 Approximating nonlinear dynamics

The LQR algorithm solves for the optimal policy when the dynamics are linear and the cost
function is an upward-curved quadratic. However, real settings are rarely this simple! Let’s
return to the CartPole example from the start of the chapter (ex. 3.1). The dynamics (physics)
aren’t linear. How can we approximate this by an LQR problem?

Concretely, let’s consider a noise-free problem since, as we saw, the noise doesn’t factor into
the optimal policy. Let’s assume the dynamics and cost function are stationary, and ignore
the terminal state for simplicity:

Definition 3.12 (Nonlinear control problem).

min
𝜋0,…,𝜋𝐻−1∶𝒮→𝒜

𝔼
𝑥0∼𝑃0

[
𝐻−1
∑
ℎ=0

𝑐(𝑥ℎ, 𝑢ℎ)]

where 𝑥ℎ+1 = 𝑓(𝑥ℎ, 𝑢ℎ)
𝑢ℎ = 𝜋ℎ(𝑥ℎ)
𝑥0 ∼ 𝜇0
𝑐(𝑥, 𝑢) = 𝑑(𝑥, 𝑥⋆) + 𝑑(𝑢, 𝑢⋆).

Here, 𝑑 denotes a function that measures the “distance” between its two arguments.

This is now only slightly simplified from the general optimal control problem (see def. 3.2).
Here, we don’t know an analytical form for the dynamics 𝑓 or the cost function 𝑐, but we
assume that we’re able to query/sample/simulate them to get their values at a given state and
action. To clarify, consider the case where the dynamics are given by real world physics. We
can’t (yet) write down an expression for the dynamics that we can differentiate or integrate
analytically. However, we can still simulate the dynamics and cost function by running a
real-world experiment and measuring the resulting states and costs. How can we adapt LQR
to this more general nonlinear case?

3.6.1 Local linearization

How can we apply LQR when the dynamics are nonlinear or the cost function is more complex?
We’ll exploit the useful fact that we can take a function that’s locally continuous around
(𝑥⋆, 𝑢⋆) and approximate it nearby with low-order polynomials (i.e. its Taylor approximation).
In particular, as long as the dynamics 𝑓 are differentiable around (𝑥⋆, 𝑢⋆) and the cost function
𝑐 is twice differentiable at (𝑥⋆, 𝑢⋆), we can take a linear approximation of 𝑓 and a quadratic
approximation of 𝑐 to bring us back to the regime of LQR.

Linearizing the dynamics around (𝑥⋆, 𝑢⋆) gives:
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𝑓(𝑥, 𝑢) ≈ 𝑓(𝑥⋆, 𝑢⋆) + ∇𝑥𝑓(𝑥⋆, 𝑢⋆)(𝑥 − 𝑥⋆) + ∇𝑢𝑓(𝑥⋆, 𝑢⋆)(𝑢 − 𝑢⋆)

(∇𝑥𝑓(𝑥, 𝑢))𝑖𝑗 = 𝑑𝑓𝑖(𝑥, 𝑢)
𝑑𝑥𝑗

, 𝑖, 𝑗 ≤ 𝑛𝑥 (∇𝑢𝑓(𝑥, 𝑢))𝑖𝑗 = 𝑑𝑓𝑖(𝑥, 𝑢)
𝑑𝑢𝑗

, 𝑖 ≤ 𝑛𝑥, 𝑗 ≤ 𝑛𝑢

and quadratizing the cost function around (𝑥⋆, 𝑢⋆) gives:

𝑐(𝑥, 𝑢) ≈ 𝑐(𝑥⋆, 𝑢⋆) constant term
+ ∇𝑥𝑐(𝑥⋆, 𝑢⋆)(𝑥 − 𝑥⋆) + ∇𝑢𝑐(𝑥⋆, 𝑢⋆)(𝑎 − 𝑢⋆) linear terms

+ 1
2(𝑥 − 𝑥⋆)⊤∇𝑥𝑥𝑐(𝑥⋆, 𝑢⋆)(𝑥 − 𝑥⋆)

+ 1
2(𝑢 − 𝑢⋆)⊤∇𝑢𝑢𝑐(𝑥⋆, 𝑢⋆)(𝑢 − 𝑢⋆)

+ (𝑥 − 𝑥⋆)⊤∇𝑥𝑢𝑐(𝑥⋆, 𝑢⋆)(𝑢 − 𝑢⋆)

⎫}}
⎬}}⎭

quadratic terms

where the gradients and Hessians are defined as

(∇𝑥𝑐(𝑥, 𝑢))𝑖 = 𝑑𝑐(𝑥, 𝑢)
𝑑𝑥𝑖

, 𝑖 ≤ 𝑛𝑥 (∇𝑢𝑐(𝑥, 𝑢))𝑖 = 𝑑𝑐(𝑥, 𝑢)
𝑑𝑢𝑖

, 𝑖 ≤ 𝑛𝑢

(∇𝑥𝑥𝑐(𝑥, 𝑢))𝑖𝑗 = 𝑑2𝑐(𝑥, 𝑢)
𝑑𝑥𝑖𝑑𝑥𝑗

, 𝑖, 𝑗 ≤ 𝑛𝑥 (∇𝑢𝑢𝑐(𝑥, 𝑢))𝑖𝑗 = 𝑑2𝑐(𝑥, 𝑢)
𝑑𝑢𝑖𝑑𝑢𝑗

, 𝑖, 𝑗 ≤ 𝑛𝑢

(∇𝑥𝑢𝑐(𝑥, 𝑢))𝑖𝑗 = 𝑑2𝑐(𝑥, 𝑢)
𝑑𝑥𝑖𝑑𝑢𝑗

. 𝑖 ≤ 𝑛𝑥, 𝑗 ≤ 𝑛𝑢

Exercise 3.5 (Expressing as quadratic). Note that this cost can be expressed in the general
quadratic form seen in eq. 3.26. Derive the corresponding quantities 𝑄, 𝑅, 𝑀, 𝑞, 𝑟, 𝑐.

3.6.2 Finite differencing

To calculate these gradients and Hessians in practice, we use a method known as finite differ-
encing for numerically computing derivatives. Namely, we can simply use the limit definition
of the derivative, and see how the function changes as we add or subtract a tiny 𝛿 to the
input.

𝑑
𝑑𝑥𝑓(𝑥) = lim

𝛿→0
𝑓(𝑥 + 𝛿) − 𝑓(𝑥)

𝛿

This only requires us to be able to query the function, not to have an analytical expression for
it, which is why it’s so useful in practice.
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3.6.3 Local convexification

However, simply taking the second-order approximation of the cost function is insufficient,
since for the LQR setup we required that the 𝑄 and 𝑅 matrices were positive definite, i.e. that
all of their eigenvalues were positive.

One way to naively force some symmetric matrix 𝐷 to be positive definite is to set any non-
positive eigenvalues to some small positive value 𝜀 > 0. Recall that any real symmetric matrix
𝐷 ∈ ℝ𝑛×𝑛 has an basis of eigenvectors 𝑢1, … , 𝑢𝑛 with corresponding eigenvalues 𝜆1, … , 𝜆𝑛 such
that 𝐷𝑢𝑖 = 𝜆𝑖𝑢𝑖. Then we can construct the positive definite approximation by

�̃� = ⎛⎜
⎝

∑
𝑖=1,…,𝑛∣𝜆𝑖>0

𝜆𝑖𝑢𝑖𝑢⊤
𝑖 ⎞⎟

⎠
+ 𝜀𝐼.

Exercise: Convince yourself that �̃� is indeed positive definite.

Note that Hessian matrices are generally symmetric, so we can apply this process to 𝑄 and
𝑅 to obtain the positive definite approximations 𝑄 and 𝑅. Now that we have an upward-
curved quadratic approximation to the cost function, and a linear approximation to the state
transitions, we can simply apply the time-homogenous LQR methods from sec. 3.4.

But what happens when we enter states far away from 𝑥⋆ or want to use actions far from 𝑢⋆?
A Taylor approximation is only accurate in a local region around the point of linearization, so
the performance of our LQR controller will degrade as we move further away. We’ll see how
to address this in the next section using the iterative LQR algorithm.

Figure 3.6: Local linearization might only be accurate in a small region around the point of
linearization.
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3.6.4 Iterative LQR

To address these issues with local linearization, we’ll use an iterative approach, where we
repeatedly linearize around different points to create a time-dependent approximation of the
dynamics, and then solve the resulting time-dependent LQR problem to obtain a better policy.
This is known as iterative LQR or iLQR:

Definition 3.13 (Iterative LQR). For each iteration of the algorithm:

1. Form a time-dependent LQR problem (sec. 3.5.1) around the current candidate trajectory
using local linearization.

2. Compute the optimal policy of the time-dependent LQR problem.
3. Sample a trajectory using this optimal policy.
4. Compute a better candidate trajectory by interpolating between the current and pro-

posed actions.

Figure 3.7: iLQR can be phrased in the style of policy iteration (sec. 2.4.4.2). It alternates
between computing a locally linear model around the current policy’s trajectories
and computing the optimal policy that solves the linear model.

Now let’s go through the details of each step. We’ll use superscripts to denote the iteration of
the algorithm. We’ll also denote ̄𝑥0 = 𝔼𝑥0∼𝜇0

[𝑥0] as the expected initial state.

At iteration 𝑖 of the algorithm, we begin with a candidate trajectory ̄𝜏 𝑖 = ( ̄𝑥𝑖
0, �̄�𝑖

0, … , ̄𝑥𝑖
𝐻−1, �̄�𝑖

𝐻−1).
Step 1: Form a time-dependent LQR problem. At each timestep ℎ ∈ [𝐻], we use the
techniques from sec. 3.6 to linearize the dynamics and quadratize the cost function around
( ̄𝑥𝑖

ℎ, �̄�𝑖
ℎ):

𝑓ℎ(𝑥, 𝑢) ≈ 𝑓( ̄𝑥𝑖
ℎ, �̄�𝑖

ℎ) + ∇𝑥𝑓( ̄𝑥𝑖
ℎ, �̄�𝑖

ℎ)(𝑥 − ̄𝑥𝑖
ℎ) + ∇𝑢𝑓( ̄𝑥𝑖

ℎ, �̄�𝑖
ℎ)(𝑢 − �̄�𝑖

ℎ)

𝑐ℎ(𝑥, 𝑢) ≈ 𝑐( ̄𝑥𝑖
ℎ, �̄�𝑖

ℎ) + [𝑥 − ̄𝑥𝑖
ℎ 𝑢 − �̄�𝑖

ℎ] [∇𝑥𝑐( ̄𝑥𝑖
ℎ, �̄�𝑖

ℎ)
∇𝑢𝑐( ̄𝑥𝑖

ℎ, �̄�𝑖
ℎ)]

+ 1
2 [𝑥 − ̄𝑥𝑖

ℎ 𝑢 − �̄�𝑖
ℎ] [∇𝑥𝑥𝑐( ̄𝑥𝑖

ℎ, �̄�𝑖
ℎ) ∇𝑥𝑢𝑐( ̄𝑥𝑖

ℎ, �̄�𝑖
ℎ)

∇𝑢𝑥𝑐( ̄𝑥𝑖
ℎ, �̄�𝑖

ℎ) ∇𝑢𝑢𝑐( ̄𝑥𝑖
ℎ, �̄�𝑖

ℎ)] [𝑥 − ̄𝑥𝑖
ℎ

𝑢 − �̄�𝑖
ℎ
] .
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Step 2: Compute the optimal policy. We solve the time-dependent LQR problem us-
ing the time-dependent algebraic Riccati equation (def. 3.11) to compute the optimal policy
𝜋𝑖

0, … , 𝜋𝑖
𝐻−1.

Step 3: Generate a new series of actions. We generate a new sample trajectory by taking
actions according to this optimal policy:

̄𝑥𝑖+1
0 = ̄𝑥0, �̃�ℎ = 𝜋𝑖

ℎ( ̄𝑥𝑖+1
ℎ ), ̄𝑥𝑖+1

ℎ+1 = 𝑓( ̄𝑥𝑖+1
ℎ , �̃�ℎ).

Note that the states are sampled according to the true dynamics, which we assume we have
query access to.

Step 4: Compute a better candidate trajectory. Note that we’ve denoted these actions
as �̃�ℎ and aren’t directly using them for the next iteration �̄�𝑖+1

ℎ . Rather, we want to interpolate
between them and the actions from the previous iteration �̄�𝑖

0, … , �̄�𝑖
𝐻−1. This is so that the cost

will increase monotonically, since if the new policy turns out to actually be worse, we can stay
closer to the previous trajectory. The new policy might be worse, for example, if the states
in the new trajectory are far enough from the original states that the local linearization is no
longer accurate.

Formally, we want to find 𝛼 ∈ [0, 1] to generate the next iteration of actions �̄�𝑖+1
0 , … , �̄�𝑖+1

𝐻−1
such that the cost is minimized:

min
𝛼∈[0,1]

𝐻−1
∑
ℎ=0

𝑐(𝑥ℎ, �̄�𝑖+1
ℎ )

where 𝑥ℎ+1 = 𝑓(𝑥ℎ, �̄�𝑖+1
ℎ )

�̄�𝑖+1
ℎ = 𝛼�̄�𝑖

ℎ + (1 − 𝛼)�̃�ℎ
𝑥0 = ̄𝑥0.

Note that this optimizes over the closed interval [0, 1], so by the Extreme Value Theorem, it’s
guaranteed to have a global maximum.

The final output of this algorithm is a policy 𝜋𝑛steps derived after 𝑛steps of the algorithm.
Though the proof is somewhat complex, one can show that for many nonlinear control problems,
this solution converges to a locally optimal solution (in the policy space).

3.7 Key takeaways

This chapter introduced some approaches to solving simple variants of the optimal control
problem def. 3.2. We began with the simple case of linear dynamics and an upward-curved
quadratic cost. This model is called the linear quadratic regulator (LQR). The optimal policy
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can be solved using dynamic programming. We then extended these results to the more
general nonlinear case via local linearization. We finally studied the iterative LQR algorithm
for solving nonlinear control problems.

In the big picture, the LQR algorithm can be seen as an extension of the dynamic programming
algorithms in Chapter 2 to continuous state and action spaces. Both of these methods assume
that the environment is fully known. iLQR loosens this assumption slightly: as long as we
have “query access” to the environment, that is, we can efficiently sample the state following
any given state-action pair, we can locally approximate the dynamics using finite differences.

3.8 Bibliographic notes and further reading

The field of control theory generally predates that of RL and can be seen as a precursor to
the model-based planning algorithms used for RL tasks. People have attempted to solve the
optimal control problem since antiquity: the first recorded control device (i.e. our notion of a
policy, put into practice) is thought to be a water clock from the third century BCE that kept
time by controlling the amount of water flowing out of a vessel (Keviczky et al., 2019; Mayr,
1970).

Watt’s 1788 centrifugal governor for controlling the pace of a steam engine was one of the
greatest inventions in control at the time. We refer the reader to (Bellman, 1961; MacFarlane,
1979) for more on the history of control systems.

The first attempt to formalize control theory as a field is attributed to Maxwell (1867). Maxwell
(well known for Maxwell’s equations) demonstrated the utility of analyzing mathematical mod-
els to design stable systems. Other researchers also studied the stability of differential equa-
tions. The work of Lyapunov (1892) has been widely influential in this field; his seminal work
did not appear in English until Ljapunov & Fuller (1992).

A number of excellent textbooks have been published on optimal control (Athans & Falb, 1966;
Bellman, 1957; Berkovitz, 1974; Lewis et al., 2012). We refer interested readers to these for
further reading, particularly about the continuous-time case.
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4 Multi-Armed Bandits

4.1 Introduction

The multi-armed bandit (MAB) problem is a simple setting for studying the basic challenges
of sequential decision-making. In this setting, an agent repeatedly chooses from a fixed set of
actions, called arms, each of which has an associated reward distribution. The agent’s goal is
to maximize the total reward it receives over some time period. Here are a few examples:

Example 4.1 (Online advertising). Let’s sup-
pose you, the agent, are an advertising com-
pany. You have 𝐾 different ads that you can
show to users. Let’s suppose you are targeting
a single user. You receive 1 reward if the user
clicks the ad, and 0 otherwise. Thus, the un-
known reward distribution associated to each ad
is a Bernoulli distribution defined by the prob-
ability that the user clicks on the ad. Your goal
is to maximize the total number of clicks by the
user. (a) Deciding which ad to put on a billboard can be

treated as a MAB problem. Image from Nega-
tive Space (2015).

The MAB is the simplest setting for exploring the exploration-exploitation tradeoff:
should the agent choose new actions to learn more about the environment, or should it choose
actions that it already knows to be good?

In this chapter, we will introduce the multi-armed bandits setting, and discuss some of the
challenges that arise when trying to solve problems in this setting. We will also introduce
some of the key concepts that we will use throughout the book, such as regret and exploration-
exploitation tradeoffs.

Remark 4.1 (Etymology). The name “multi-armed bandit” comes from slot machines in casinos,
which are often called “one-armed bandits” since they have one arm (the lever) and rob money
from the player.
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Example 4.2 (Clinical trials). Suppose you’re
a pharmaceutical company, and you’re testing
a new drug. You have 𝐾 different dosages of
the drug that you can administer to patients.
You receive 1 reward if the patient recovers,
and 0 otherwise. Thus, the unknown reward
distribution associated with each dosage is a
Bernoulli distribution defined by the probabil-
ity that the patient recovers. Your goal is to
maximize the total number of patients that re-
cover. (a) Optimizing between different medications can

be treated as a MAB problem. Image from Pix-
abay (2016a).

Table 4.1: How bandits leads into the full RL problem.

Environment is…
known (planning/optimal
control)

unknown (learning from
experience)

stateless/invariant (|𝒮| = 1) (trivial) multi-armed bandits
stateful/dynamic MDP planning (dynamic

programming)
“full” RL

4.2 The multi-armed bandit problem

Let’s frame the MAB problem mathematically. In both ex. 4.1 and ex. 4.2, the outcome of
each decision is binary (i.e. 0 or 1). This is the Bernoulli bandit problem, which we’ll use
throughout the chapter.

Definition 4.1 (Bernoulli bandit problem).
Let 𝐾 denote the number of arms. We’ll label
them 0, … , 𝐾 − 1 and use superscripts to indi-
cate the arm index 𝑘. Since we seldom need
to raise a number to a power, this won’t cause
much confusion.
Let 𝜇𝑘 be the mean of arm 𝑘, such that pulling
arm 𝑘 either returns reward 1 with probability
𝜇𝑘 or 0 otherwise.
The agent gets 𝑇 chances to pull an arm. The
task is to determine a strategy for maximizing
the total reward.

(a) Each arm 𝑘 in a Bernoulli bandit is a biased
coin with probability 𝜇𝑘 of showing heads. Each
“pull” corresponds to flipping a coin. The goal is
to maximize the number of heads given 𝑇 flips.
Image from Pixabay (2016b).

Remark 4.2 (Connection between MAB and MDP settings). A multi-armed bandit is a special
case of a finite-horizon Markov decision process with a single state (|𝒮| = 1) and a horizon of
𝐻 = 1. (Conceptually speaking, the environment is “stateless”, but an MDP with “no states”
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doesn’t make sense.) As such, Each arm is an action: |𝒜| = 𝐾. the expected value of pulling
arm 𝑘, which we denote 𝜇𝑘 in this chapter, is exactly the Q-function (def. 2.9):

𝜇𝑘 = 𝑄(𝑘) (4.1)

Note that we omit the arguments for 𝜋, ℎ, and 𝑠, which are meaningless in the MAB setting.

In pseudocode, the agent’s interaction with the MAB environment can be described by the
following process:

function mab_loop(mab ∶ MAB, agent ∶ ”Agent”)
for 𝑡 ∈ range(𝑇 ) do

𝑎𝑡 ← agent.choose_arm()
𝑟 ← pull(𝑎𝑡)
agent.update_history(𝑎𝑡, 𝑟)

end for
end function

Figure 4.4: The MAB interaction loop. 𝑎𝑡 ∈ [𝐾] denotes the 𝑡th arm pulled.

What’s the optimal strategy for the agent, i.e. the one that achieves the highest expected
reward? Convince yourself that the agent should try to always pull the arm with the highest
expected reward:

Definition 4.2 (Optimal arm). We call the arm whose reward distribution has the highest
mean the optimal arm:

𝑘⋆ ∶= arg max
𝑘∈[𝐾]

𝜇𝑘

𝜇⋆ ∶= 𝜇𝑘⋆ = max
𝑘∈[𝐾]

𝜇𝑘. (4.2)

4.2.1 Regret

When analyzing an MAB algorithm, rather than measuring its performance in terms of the
(expected) total reward, we instead compare it to the “oracle” strategy that knows the optimal
arm in advance. This gives rise to a measure of performance known as regret, which answers,
how much better could you have done had you known the optimal arm from the beginning?
This provides a more meaningful baseline than the expected total reward, whose magnitude
may vary widely depending on the bandit problem.
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Example 4.3 (Regret provides a more meaningful baseline). Consider the problem of grade
inflation or deflation. If you went to a different school or university, you might have gotten
a very different grade, independently of your actual ability. This is like comparing bandit
algorithms based on the expected total reward: the baseline varies depending on the problem
(i.e. school), making it hard to compare the algorithms (i.e. students) themselves. Instead, it
makes more sense to measure you relative to the (theoretical) best student from your school.
This is analogous to measuring algorithm performance using regret.

Definition 4.3 (Regret). The agent’s (cumulative) regret after 𝑇 pulls is defined as

Regret𝑇 ∶=
𝑇 −1
∑
𝑡=0

𝜇⋆ − 𝜇𝑎𝑡 , (4.3)

where 𝑎𝑡 ∈ [𝐾] is the arm chosen on the 𝑡th pull.

This depends on the true means of the pulled arms, and is independent of the observed rewards.
The regret Regret𝑇 is a random variable where the randomness comes from the agent’s strategy
(i.e. the sequence of actions 𝑎0, … , 𝑎𝐾−1).

Also note that we care about the total regret across all decisions, rather than just the final
decision. If we only cared about the quality of the final decision, the best strategy would be
to learn as much as possible about the environment, and then use that knowledge to make
the best possible decision at the last step. This is a pure exploration problem since the
agent is never penalized for taking suboptimal actions up to the final decision. Minimizing
the cumulative regret (or maximizing the cumulative reward) means we must strike a balance
between exploration and exploitation throughout the entire decision-making process.

Throughout the chapter, we will try to upper bound the regret of various algorithms in two
different senses:

1. Upper bound the expected regret, i.e. show that for some upper bound 𝑀𝑇 ,

𝔼[Regret𝑇 ] ≤ 𝑀𝑇 . (4.4)

2. Find a high-probability upper bound on the regret, i.e. show that for some small failure
probability 𝛿 > 0,

ℙ(Regret𝑇 ≤ 𝑀𝑇 ,𝛿) ≥ 1 − 𝛿 (4.5)

for some upper bound 𝑀𝑇 ,𝛿.

The first approach says that the regret is at most 𝑀𝑇 in expectation. However, the agent might
still achieve a higher or lower regret on a particular randomization. The second approach says
that, with probability at least 1 − 𝛿, the agent will achieve regret at most 𝑀𝑇 ,𝛿. However,
it doesn’t say anything about the regret in the remaining 𝛿 fraction of runs, which could be
arbitrarily high.
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Exercise 4.1 (Expected regret bounds yield probabilistic regret bounds). Suppose we have
an upper bound 𝑀𝑇 on the expected regret. Show that, with probability 1−𝛿, 𝑀𝑇 ,𝛿 ∶= 𝑀𝑇 /𝛿
upper bounds the regret. Note this is a much higher bound! For example, if 𝛿 = 0.01, the
high-probability bound is 100 times as large.

Remark 4.3 (Issues with regret). Is regret the right way to measure performance? Consider
the following two algorithms:

1. An algorithm which sometimes chooses very bad arms.
2. An algorithm which often chooses slightly suboptimal arms.

We might care a lot about this distinction in practice, for example, in healthcare, where an
occasional very bad decision could have extreme consequences. However, these two algorithms
could achieve the exact same expected total regret.

Other performance measures include probably approximately correct (PAC) bounds and
uniform high-probability regret bounds. There is also a Uniform-PAC bound. We won’t
discuss these in detail here; see the bibliographic notes for more details.

We’d like to achieve sublinear regret in expectation:

𝔼[Regret𝑇 ] = 𝑜(𝑇 ). (4.6)

(See sec. A.1 if you’re unfamiliar with big-oh notation.) An algorithm with sublinear regret
will eventually do as well as the oracle strategy as 𝑇 → ∞.

Remark 4.4 (Interpreting sublinear regret). An algorithm with sublinear regret in expectation
doesn’t necessarily always choose the correct arm. In fact, such an algorithm can still choose
a suboptimal arm infinitely many times. Consider a two-armed Bernoulli bandit with 𝜇0 = 0
and 𝜇1 = 1. An algorithm that chooses arm 0

√
𝑇 times out of 𝑇 still achieves 𝑂(

√
𝑇 ) regret

in expectation.

Also, sublinear regret measures the asymptotic performance of the algorithm as 𝑇 → ∞. It
doesn’t tell us about the rate at which the algorithm approaches optimality.

In the remaining sections, we’ll walk through a series of MAB algorithms and see how they
make different tradeoffs between exploration and exploitation.
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4.3 Pure exploration

A trivial strategy is to always choose arms at random (i.e. “pure exploration”).

Definition 4.4 (Pure exploration). On the 𝑡th pull, the arm 𝑎𝑡 is sampled uniformly at
random from all arms:

𝑎𝑡 ∼ Unif([𝐾]) (4.7)

Theorem 4.1 (Pure exploration expected regret). The pure exploration strategy achieves
regret Θ(𝑇 ) in expectation.

Proof. By choosing arms uniformly at random,

𝔼
𝑎𝑡∼Unif([𝐾])

[𝜇𝑎𝑡 ] = ̄𝜇 ∶= 1
𝐾

𝐾−1
∑
𝑘=0

𝜇𝑘 (4.8)

so the expected regret is simply

𝔼[Regret𝑇 ] =
𝑇 −1
∑
𝑡=0

𝔼[𝜇⋆ − 𝜇𝑎𝑡 ]

= 𝑇 ⋅ (𝜇⋆ − ̄𝜇).
(4.9)

This scales as Θ(𝑇 ) in expectation, i.e. linear in the number of pulls 𝑇 .

Figure 4.5: Reward and cumulative regret of the pure exploration algorithm.
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Pure exploration doesn’t use any information about the environment to improve its strategy.
The distribution over its arm choices always appears “(uniformly) random”.

4.4 Pure greedy

How might we improve on pure exploration? Instead, we could try each arm once, and then
commit to the one with the highest observed reward. We’ll call this the pure greedy strat-
egy.

Definition 4.5 (Pure greedy). On the 𝑡th pull, the arm 𝑎𝑡 is chosen according to

𝑎𝑡 ∶= {𝑡 𝑡 < 𝐾
arg max𝑘∈[𝐾] 𝑟𝑘 𝑡 ≥ 𝐾 (4.10)

where 𝑟𝑡 denotes the reward obtained on the 𝑡th pull.

How does the expected regret of this strategy compare to that of pure exploration? We’ll
do a more general analysis in the following section. Now, for intuition, suppose there’s just
𝐾 = 2 arms with means 𝜇1 > 𝜇0. If 𝑟1 > 𝑟0, then we repeatedly pull arm 1 and achieve zero
regret per pull. If 𝑟0 > 𝑟1, then we repeatedly pull arm 0 and incur 𝜇1 − 𝜇0 regret per pull.
Accounting for the first two pulls and the case of a tie, we obtain the following lower bound:

𝔼[Regret𝑇 ] ≥ ℙ(𝑟0 > 𝑟1)𝑇 ⋅ (𝜇1 − 𝜇0) (4.11)

This is still Θ(𝑇 ), the same as pure exploration!

Figure 4.6: Reward and cumulative regret of the pure greedy algorithm.
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The cumulative regret is a straight line because the regret only depends on the arms chosen
and not the actual reward observed. In fact, we see in fig. 4.6 that the greedy algorithm can get
lucky on the first set of pulls and act entirely optimally for that experiment! But its average
regret is still linear, since the chance of sticking with a suboptimal arm is nonzero.

4.5 Explore-then-commit

We can improve the pure greedy algorithm (def. 4.5) as follows: let’s reduce the variance of
the reward estimates by pulling each arm 𝑁explore ≥ 1 times before committing. This is called
the explore-then-commit strategy.

Definition 4.6 (Explore-then-commit). The explore-then-commit algorithm first pulls each
arm 𝑁explore times. Let

̂𝜇𝑘 ∶= 1
𝑁explore

𝑁explore−1

∑
𝑛=0

𝑟𝑘𝑁explore+𝑛 (4.12)

denote the empirical mean reward of arm 𝑘 during these pulls. Afterwards, on the 𝑡th pull
(for 𝑡 ≥ 𝑁explore𝐾), it chooses

𝑎𝑡 ∶= arg max
𝑘∈[𝐾]

̂𝜇𝑘. (4.13)

Note that the “pure greedy” strategy above is just the special case where 𝑁explore = 1.

Figure 4.7: Reward and cumulative regret of the explore-then-commit algorithm
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This algorithm finds the true optimal arm more frequently than the pure greedy strategy. We
would expect ETC to then have a lower expected regret. We will show that ETC achieves the
following regret bound:

Theorem 4.2 (ETC high-probability regret bound). The regret of ETC satisfies, with high
probability,

Regret𝑇 = 𝑂(𝑇 2/3𝐾1/3), (4.14)

where the tilde means we ignore logarithmic factors.

Proof. Let’s analyze the expected regret of the explore-then-commit strategy by splitting it
up into the exploration and exploitation phases.

Exploration phase. This phase takes 𝑁explore𝐾 pulls. Since at each step we incur at most 1
regret, the total regret is at most 𝑁explore𝐾.

Exploitation phase. This will take a bit more effort. We’ll prove that for any total time 𝑇 ,
we can choose 𝑁explore such that with arbitrarily high probability, the regret is sublinear.

Let �̂� denote the arm chosen after the exploration phase. We know the regret from the
exploitation phase is

𝑇exploit(𝜇⋆ − 𝜇�̂�) where 𝑇exploit ∶= 𝑇 − 𝑁explore𝐾. (4.15)

So we’d need 𝜇⋆ − 𝜇�̂� → 0 as 𝑇 → ∞ in order to achieve sublinear regret. How can we do this?

Let’s define Δ𝑘 ∶= ̂𝜇𝑘 − 𝜇𝑘 to denote how far the mean estimate for arm 𝑘 is from the true
mean. How can we bound this quantity? We’ll use the following useful inequality for i.i.d.
bounded random variables:

Theorem 4.3 (Hoeffding’s inequality). Let 𝑋0, … , 𝑋𝑁−1 be i.i.d. random variables with
𝑋𝑛 ∈ [0, 1] almost surely for each 𝑛 ∈ [𝑁]. Then for any 𝛿 > 0,

ℙ (∣ 1
𝑁

𝑁
∑
𝑛=1

(𝑋𝑛 − 𝔼[𝑋𝑛])∣ > √ ln(2/𝛿)
2𝑁 ) ≤ 𝛿. (4.16)

Proof. The proof of this inequality is beyond the scope of this book. See Vershynin (2018,
ch. 2.2).
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We can apply this directly to the rewards for a given arm 𝑘, since the rewards from that arm
are i.i.d.:

ℙ (|Δ𝑘| > √ ln(2/𝛿)
2𝑁explore

) ≤ 𝛿. (4.17)

This can be thought of as a 1 − 𝛿 confidence interval for the true arm mean 𝜇𝑘. But we can’t
apply this to arm �̂� directly since �̂� is itself a random variable. Instead, we need to bound the
error across all the arms simultaneously, so that the resulting bound will apply no matter what
�̂� “crystallizes” to. The union bound provides a simple way to do this. (See Theorem A.1
for a review.)

In our case, we have one event per arm, stating that the CI for that arm contains the true
mean. The probability that all of the CIs are accurate is then

ℙ (∀𝑘 ∈ [𝐾] ∶ |Δ𝑘| ≤ √ ln(2/𝛿)
2𝑁explore

) ≥ 1 − 𝐾𝛿. (4.18)

This lower-bounds the probability that the CI for arm �̂� is accurate. Let us return to our
original task of bounding 𝜇⋆ − 𝜇�̂�. We apply the useful trick of “adding zero”:

𝜇𝑘⋆ − 𝜇�̂� = 𝜇𝑘⋆ − 𝜇�̂� + ( ̂𝜇𝑘⋆ − ̂𝜇𝑘⋆) + ( ̂𝜇�̂� − ̂𝜇�̂�)
= Δ�̂� − Δ𝑘⋆ + ( ̂𝜇𝑘⋆ − ̂𝜇�̂�)⏟⏟⏟⏟⏟

≤0 by definition of �̂�

≤ 2√ ln(2𝐾/𝛿′)
2𝑁explore

with probability at least 1 − 𝛿′

(4.19)

where we’ve set 𝛿′ ∶= 𝐾𝛿. Putting this all together, we’ve shown that, with probability 1 − 𝛿′,

Regret𝑇 ≤ 𝑁explore𝐾 + 𝑇exploit ⋅ √2 ln(2𝐾/𝛿′)
𝑁explore

. (4.20)

Note that it suffices for 𝑁explore to be on the order of
√

𝑇 to achieve sublinear regret. In
particular, we can find the optimal 𝑁explore by setting the derivative of eq. 4.20 with respect
to 𝑁explore to zero:
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0 = 𝐾 − 𝑇exploit ⋅ 1
2√2 ln(2𝐾/𝛿′)

𝑁3
explore

𝑁explore = (𝑇exploit ⋅ √ln(2𝐾/𝛿′)/2
𝐾 )

2/3 (4.21)

Plugging this into the expression for the regret, we have (still with probability 1 − 𝛿′):

Regret𝑇 ≤ 3𝑇 2/3 3√𝐾 ln(2𝐾/𝛿′)/2
= 𝑂(𝑇 2/3𝐾1/3),

(4.22)

satisfying Theorem 4.2.

The ETC algorithm is rather “abrupt” in that it switches from exploration to exploitation
after a fixed number of pulls. What if the total number of pulls 𝑇 isn’t known in advance?
We’ll need to use a more gradual transition, which brings us to the epsilon-greedy algorithm.

4.6 Epsilon-greedy

Instead of doing all of the exploration and then all of the exploitation in separate phases,
which requires knowing the time horizon beforehand, we can instead interleave exploration
and exploitation by, at each pull, choosing a random action with some probability. We call
this the epsilon-greedy algorithm.

Definition 4.7 (Epsilon-greedy). Let 𝑁𝑘
𝑡 denote the number of times that arm 𝑘 is pulled

within the first 𝑡 overall pulls, and let ̂𝜇𝑘
𝑡 denote the sample mean of the corresponding rewards:

𝑁𝑘
𝑡 ∶=

𝑡−1
∑
𝑡′=0

1{𝑎𝑡′ = 𝑘},

̂𝜇𝑘
𝑡 ∶= 1

𝑁𝑘
𝑡

𝑡−1
∑
𝑡′=0

1{𝑎𝑡′ = 𝑘}𝑟𝑡′ .
(4.23)

On the 𝑡th pull, the arm 𝑎𝑡 is chosen according to

𝑎𝑡 ∶= {sample from Unif([𝐾]) with probability 𝜖𝑡
arg max𝑘∈[𝐾] ̂𝜇𝑘

𝑡 with probability 1 − 𝜖𝑡,
(4.24)

where 𝜖𝑡 ∈ [0, 1] is the probability of choosing a random action.
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Figure 4.8: Reward and cumulative regret of the epsilon-greedy algorithm

We let the exploration probability 𝜖𝑡 vary over time. This lets us gradually decrease 𝜖𝑡 as we
learn more about the reward distributions and no longer need to explore as much.

Exercise 4.2 (Regret for constant epsilon). What is the asymptotic expected regret of the
algorithm if we set 𝜖 to be a constant? Is this different from pure exploration (def. 4.4)?

Theorem 4.4 (Epsilon-greedy expected regret). Let 𝜖𝑡 ∶= 3√𝐾 ln(𝑡)/𝑡. Then the epsilon-
greedy achieves a regret of 𝑂(𝑡2/3𝐾1/3) in expectation (ignoring logarithmic factors).

Proof. We won’t prove this here. See A. Agarwal et al. (2022) for a proof.

In ETC, we had to set 𝑁explore based on the total number of pulls 𝑇 . But the epsilon-greedy
algorithm handles the exploration incrementally: the regret rate holds for any 𝑡, and doesn’t
depend on the total number of pulls 𝑇 .

But the way epsilon-greedy and ETC explore is rather naive: they explore uniformly across
all the arms. But what if we could be smarter about it, and explore more for arms that we’re
less certain about?

4.7 Upper Confidence Bound (UCB)

The upper confidence bound algorithm is the first strategy we study that explores adaptively:
it identifies arms it is less certain about, and explicitly trades off between learning more about
these and exploiting arms that already seem good.
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To quantify how certain we are about the mean of each arm, UCB computes statistical confi-
dence intervals (CIs) for the arm means, and then chooses the arm with the highest upper con-
fidence bound (hence its name). Concretely, after 𝑡 pulls, we compute upper confidence bounds
𝑀𝑘

𝑡 for each arm 𝑘 such that 𝜇𝑘 ≤ 𝑀𝑘
𝑡 with high probability, and select 𝑎𝑡 ∶= arg max𝑘∈[𝐾] 𝑀𝑘

𝑡 .
This operates on the principle of the benefit of the doubt (i.e. optimism in the face of
uncertainty): we’ll choose the arm that we’re most optimistic about.

Figure 4.9: Visualization of confidence intervals for the arm means. UCB would choose arm 0
since it has the highest upper confidence bound.

Theorem 4.5 (Confidence intervals for arm means). As in our definition of the epsilon-greedy
algorithm (def. 4.7), let 𝑁𝑘

𝑡 denote the number of times we pull arm 𝑘 within the first 𝑡 pulls,
and let ̂𝜇𝑘

𝑡 denote the sample mean of the corresponding rewards. Then with probability at least
1 − 𝛿, for all 𝑡 ≥ 𝐾,

𝜇𝑘 ∈ [ ̂𝜇𝑘
𝑡 − 1

√𝑁𝑘
𝑡

⋅ √ ln(2𝑡/𝛿)
2 , ̂𝜇𝑘

𝑡 + 1
√𝑁𝑘

𝑡
⋅ √ ln(2𝑡/𝛿)

2 ] . (4.25)

We assume that during the first 𝐾 pulls, we pull each arm once.

Definition 4.8 (Upper confidence bound algorithm (Auer, 2002)). The UCB algorithm first
pulls each arm once. Then it chooses the 𝑡th pull (for 𝑡 ≥ 𝐾) by taking
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𝑎𝑡 ∶= arg max
𝑘∈[𝐾]

̂𝜇𝑘
𝑡 + √ ln(2𝑡/𝛿)

2𝑁𝑘
𝑡

, (4.26)

where 𝛿 ∈ (0, 1) is a parameter that controls the width of the confidence interval.

Intuitively, UCB prioritizes arms where:

1. ̂𝜇𝑘
𝑡 is large, i.e. the arm’s corresponding sample mean is high, and we’d choose it for

exploitation, and
2. √ ln(2𝑡/𝛿)

2𝑁𝑘
𝑡

is large, i.e. 𝑁𝑘
𝑡 is small and we’re still uncertain about the arm, and we’d

choose it for exploration.

𝛿 is formally the coverage probability of the confidence interval, but we can also treat it as a
parameter that trades off between exploration and exploitation:

• A smaller 𝛿 would give us a larger interval, emphasizing the exploration term.
• A larger 𝛿 would give a tighter interval, prioritizing the current sample means.

We now prove Theorem 4.5.

Proof. Our proof is similar to that in Theorem 4.2: we use Hoeffding’s inequality to construct
a CI for the mean of a bounded random variable (i.e. the rewards from a given arm). However,
we must be careful, since the number of samples from arm 𝑘 up to time 𝑡, 𝑁𝑘

𝑡 , is a random
variable.

Hoeffding’s inequality (Theorem 4.3) tells us that, for 𝑁 i.i.d. samples ̃𝑟0, … , ̃𝑟𝑁−1 from arm
𝑘,

| ̃𝜇𝑘
𝑁 − 𝜇𝑘| ≤ √ ln(2/𝛿)

2𝑁 (4.27)

with probability at least 1 − 𝛿, where ̃𝜇𝑘
𝑁 = 1

𝑁 ∑𝑁−1
𝑛=0 ̃𝑟𝑛. The union bound then tells us that

with probability at least 1 − 𝛿′, for all 𝑁 = 1, … , 𝑡,

∀𝑁 = 1, … , 𝑡 ∶ | ̃𝜇𝑘
𝑁 − 𝜇𝑘| ≤ √ ln(2𝑡/𝛿′)

2𝑁 . (4.28)

Since 𝑁𝑘
𝑡 ∈ {1, … , 𝑡} (we assume each arm is pulled once at the start), eq. 4.28 implies that

| ̃𝜇𝑘
𝑁𝑘

𝑡
− 𝜇𝑘| ≤ √ ln(2𝑡/𝛿′)

𝑁 (4.29)
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with probability at least 1 − 𝛿′ as well. But notice that ̃𝜇𝑘
𝑁𝑘

𝑡
is identically distributed to ̂𝜇𝑘

𝑡 :
both refer to the sample mean of the first 𝑁𝑘

𝑡 pulls from arm 𝑘. This gives the bound in
Theorem 4.5 (after relabelling 𝛿′ ↦ 𝛿).

Figure 4.10: Reward and cumulative regret of the upper confidence bound algorithm

As desired, this explores in a smarter, adaptive way compared to the previous algorithms. Does
it achieve lower regret?

Theorem 4.6 (UCB high-probability regret bound). With probability 1 − 𝛿″,

Regret𝑇 = 𝑂(𝐾
√

𝑇 ) (4.30)

Proof. First we’ll bound the regret incurred at each timestep. Then we’ll bound the total
regret across timesteps.

For the sake of analysis, we’ll use a slightly looser bound that applies across the whole time
horizon and across all arms. We’ll omit the derivation since it’s very similar to the above (walk
through it yourself for practice).

ℙ (∀𝑘 ≤ 𝐾, 𝑡 < 𝑇 ∶ | ̂𝜇𝑘
𝑡 − 𝜇𝑘| ≤ 𝐵𝑘

𝑡 ) ≥ 1 − 𝛿″

where 𝐵𝑘
𝑡 ∶= √ ln(2𝑇 𝐾/𝛿″)

2𝑁𝑘
𝑡

.
(4.31)

Intuitively, 𝐵𝑘
𝑡 denotes the width of the CI for arm 𝑘 at time 𝑡. Then, assuming the above

uniform bound holds (which occurs with probability 1 − 𝛿″), we can bound the regret at each
timestep as follows:
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𝜇⋆ − 𝜇𝑎𝑡 ≤ ̂𝜇𝑘⋆
𝑡 + 𝐵𝑘⋆

𝑡 − 𝜇𝑎𝑡 applying UCB to arm 𝑘⋆

≤ ̂𝜇𝑎𝑡
𝑡 + 𝐵𝑎𝑡

𝑡 − 𝜇𝑎𝑡 since UCB chooses 𝑎𝑡 = arg max
𝑘∈[𝐾]

̂𝜇𝑘
𝑡 + 𝐵𝑘

𝑡

≤ 2𝐵𝑎𝑡
𝑡 since ̂𝜇𝑎𝑡

𝑡 − 𝜇𝑎𝑡 ≤ 𝐵𝑎𝑡
𝑡 by definition of 𝐵𝑎𝑡

𝑡

(4.32)

Summing this across timesteps gives

Regret𝑇 ≤
𝑇 −1
∑
𝑡=0

2𝐵𝑎𝑡
𝑡

= √2 ln(2𝑇 𝐾/𝛿″)
𝑇 −1
∑
𝑡=0

(𝑁𝑎𝑡
𝑡 )−1/2

𝑇 −1
∑
𝑡=0

(𝑁𝑎𝑡
𝑡 )−1/2 =

𝑇 −1
∑
𝑡=0

𝐾−1
∑
𝑘=0

1{𝑎𝑡 = 𝑘}(𝑁𝑘
𝑡 )−1/2

=
𝐾−1
∑
𝑘=0

𝑁𝑘
𝑇

∑
𝑛=1

𝑛−1/2

≤ 𝐾
𝑇

∑
𝑛=1

𝑛−1/2

𝑇
∑
𝑛=1

𝑛−1/2 ≤ 1 + ∫
𝑇

1
𝑥−1/2 d𝑥

= 1 + (2√𝑥)𝑇
1

= 2
√

𝑇 − 1
≤ 2

√
𝑇

Putting everything together gives, with probability 1 − 𝛿″,

Regret𝑇 ≤ 2𝐾√2𝑇 ln(2𝑇 𝐾/𝛿″)
= 𝑂(𝐾

√
𝑇 ),

(4.33)

as in Theorem 4.6.

In fact, we can do a more sophisticated analysis to trim off a factor of
√

𝐾 and show Regret𝑇 =
𝑂(

√
𝑇 𝐾).
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4.7.1 Lower bound on regret (intuition)

Is it possible to do better than Ω(
√

𝑇 ) in general? In fact, no! We can show that any
algorithm must incur Ω(

√
𝑇 ) regret in the worst case. We won’t rigorously prove this here,

but the intuition is as follows.

The Central Limit Theorem tells us that with 𝑇 i.i.d. samples from some distribution, we can
only learn the mean of the distribution to within Ω(1/

√
𝑇 ) (the standard deviation). Then,

since we get 𝑇 samples spread out across the arms, we can only learn each arm’s mean to an
even looser degree.

That is, if two arms have means that are within about 1/
√

𝑇 , we won’t be able to confidently
tell them apart, and will sample them about equally. But then we’ll incur regret

Ω((𝑇 /2) ⋅ (1/
√

𝑇 )) = Ω(
√

𝑇 ). (4.34)

4.8 Thompson sampling and Bayesian bandits

So far, we’ve treated the parameters 𝜇0, … , 𝜇𝐾−1 of the reward distributions as fixed. Instead,
we can take a Bayesian approach where we treat them as random variables from some prior
distribution. Then, upon pulling an arm and observing a reward, we can simply condition
on this observation to exactly describe the posterior distribution over the parameters. This
fully describes the information we gain about the parameters from observing the reward.

From this Bayesian perspective, the Thompson sampling algorithm follows naturally: just
sample from the distribution of the optimal arm, given the observations!

In other words, we sample each arm proportionally to how likely we think it is to be optimal,
given the observations so far. This strikes a good exploration-exploitation tradeoff: we explore
more for arms that we’re less certain about, and exploit more for arms that we’re more certain
about. Thompson sampling is a simple yet powerful algorithm that achieves state-of-the-art
performance in many settings.

Example 4.4 (Bayesian Bernoulli bandit). We’ve been working in the Bernoulli bandit setting,
where arm 𝑘 yields a reward of 1 with probability 𝜇𝑘 and no reward otherwise. The vector of
success probabilities 𝜇 = (𝜇0, … , 𝜇𝐾−1) thus describes the entire MAB.

Under the Bayesian perspective, we think of 𝜇 as a random vector drawn from some prior
distribution 𝑝 ∈ △([0, 1]𝐾). For example, we might have 𝑝 be the Uniform distribution over
the unit hypercube [0, 1]𝐾, that is,

𝑝(𝜇) = {1 if 𝜇 ∈ [0, 1]𝐾
0 otherwise

(4.35)
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In this case, upon viewing some reward, we can exactly calculate the posterior distribution
of 𝜇 using Bayes’s rule (i.e. the definition of conditional probability):

ℙ(𝜇 ∣ 𝑎0, 𝑟0) ∝ ℙ(𝑟0 ∣ 𝑎0, 𝜇)ℙ(𝑎0 ∣ 𝜇)ℙ(𝜇)
∝ (𝜇𝑎0)𝑟0(1 − 𝜇𝑎0)1−𝑟0 .

This is the PDF of the Beta(1+𝑟0, 1+(1−𝑟0)) distribution, which is a conjugate prior for the
Bernoulli distribution. That is, if we start with a Beta prior on 𝜇𝑘 (note that Unif([0, 1]) =
Beta(1, 1)), then the posterior, after conditioning on samples from Bern(𝜇𝑘), will also be Beta.
This is a very convenient property, since it means we can simply update the parameters of
the Beta distribution upon observing a reward, rather than having to recompute the entire
posterior distribution from scratch.

Figure 4.11: Reward and cumulative regret of the Thompson sampling algorithm

It turns out that asymptotically, Thompson sampling is optimal in the following sense. Lai &
Robbins (1985) prove an instance-dependent lower bound that says for any bandit algorithm,

lim inf
𝑇 →∞

𝔼[𝑁𝑘
𝑇 ]

ln(𝑇 ) ≥ 1
KL (𝜇𝑘 ∥ 𝜇⋆) (4.36)

where

KL (𝜇𝑘 ∥ 𝜇⋆) ∶= 𝜇𝑘 ln 𝜇𝑘

𝜇⋆ + (1 − 𝜇𝑘) ln 1 − 𝜇𝑘

1 − 𝜇⋆ (4.37)

measures the Kullback-Leibler divergence from the Bernoulli distribution with mean 𝜇𝑘

to the Bernoulli distribution with mean 𝜇⋆. It turns out that Thompson sampling achieves
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this lower bound with equality! That is, not only is the error rate optimal, but the constant
factor is optimal as well.

4.9 Contextual bandits

In the multi-armed bandits setting described above, each pull is exactly the same. We don’t
obtain any prior information about the reward distributions. However, consider the online
advertising example (ex. 4.1), where each arm corresponds to an ad we could show a given
user, and we receive a reward if and only if the user clicks on the ad. Suppose Alice is interested
in sports and politics, while Bob is interested in news and entertainment. The ads that Alice is
likely to click differ from those that Bob is likely to click. That is, the reward distributions of
the arms depend on some prior context. We can model such environments using contextual
bandits.

Definition 4.9 (Contextual bandit). At each pull 𝑡, a context 𝑥𝑡 is chosen from the set 𝒳 of all
possible contexts. The learner gets to observe the context before they choose an action. That
is, we treat the action chosen on the 𝑡th pull as a function of the context: 𝑎𝑡(𝑥𝑡). Then, the
learner observes the reward from the chosen arm, where the reward distribution also depends
on the context.

Example 4.5 (Online advertising as a contextual bandit problem). Suppose you represent
an online advertising company and you are tasked with placing ads on the New York Times
website. Articles are categorized into six sections, each with its own web page: U.S., World,
Business, Arts, Lifestyle, and Opinion. You might decide to frame this as a contextual bandits
problem with |𝒳| = 6. This is because the demographic of readers likely differs across the
different pages, and so the reward distributions differ across pages accordingly.

Suppose our context is discrete, as in ex. 4.5. Then we could treat each context as its own
MAB, assigning each context-arm pair to a distinct arm in an enlarged MAB of 𝐾|𝒳| arms.

Exercise 4.3 (Naive UCB for contextual bandits). Write down the UCB algorithm for this
enlarged MAB. That is, write an expression 𝑀𝑘

𝑡 in terms of 𝐾 and |𝒳| such that 𝑎𝑡(𝑥𝑡) =
arg max𝑘∈[𝐾] 𝑀𝑘

𝑡 .

Recall that executing UCB for 𝑇 timesteps on an MAB with 𝐾 arms achieves a regret bound
of 𝑂(

√
𝑇 𝐾) (Theorem 4.6). So in this problem, we would achieve regret 𝑂(√𝑇 𝐾|𝒳|) in the

contextual MAB, which has a polynomial dependence on |𝒳|. But in a situation where we
have too many possible contexts, or the context is a continuous value, this algorithm no longer
works.

Note that this “enlarged MAB” treats the different contexts as entirely unrelated to each other,
while in practice, often contexts are related to each other in some way. In the medical trial
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example (ex. 4.2), clients with similar health situations may benefit from the same medications.
How can we incorporate this structure into our solution?

4.9.1 Linear contextual bandits

Remark 4.5 (Supervised learning). The material in this section depends on basic knowledge
of supervised learning (Chapter 5).

Suppose now that we observe a vector-valued context, that is, 𝒳 = ℝ𝐷. For example, in a
medical trial (ex. 4.2), we might know the patient’s height, age, blood pressure, etc., each
of which would be a separate element of the vector. The approach of treating each context
as its own MAB problem no longer works out-of-the-box since the number of contexts is
infinite. Instead, we assume that the mean reward of each arm 𝑘 is a function of the context:
𝜇𝑘 ∶ 𝒳 → ℝ.

Rather than the Bernoulli bandit problem (def. 4.1), we’ll assume that the mean reward is
linear in the context. (This model is easier to work with for our purposes.) That is, a reward
𝑟𝑘 from arm 𝑘 is drawn according to

𝑟𝑘 = 𝑥⊤𝜃𝑘 + 𝜀, (4.38)

where 𝜃𝑘 ∈ ℝ𝐷 describes a feature direction for arm 𝑘 and 𝜀 is some independent noise with
mean 0 and variance 𝜎2. This clearly has

𝜇𝑘(𝑥) = 𝑥⊤𝜃𝑘. (4.39)

Then, on the 𝑡th pull, given context 𝑥𝑡, we can model the mean reward from arm 𝑘 as

̂𝜇𝑘
𝑡 (𝑥𝑡) ∶= 𝑥⊤

𝑡 ̂𝜃𝑘
𝑡 , (4.40)

where ̂𝜃𝑘
𝑡 is some estimator of 𝜃𝑘 computed from the first 𝑡 pulls.

Remark 4.6 (Assumptions for linear models). Why did we switch from Bernoulli reward distri-
butions to the additive model in eq. 4.38? The estimator eq. 4.40 is a bit odd for the Bernoulli
bandit problem: since 𝜇𝑘 is the success probability of arm 𝑘, it would have to lie between 0
and 1, but ̂𝜇𝑘

𝑡 (𝑥𝑡) extends outside this interval. The question of how to model the unknown
parameters of a distribution is a supervised learning problem (Chapter 5). For instance,
in Bernoulli bandit, we could instead use a logistic regression model for each arm’s success
probability. We won’t dive into more advanced supervised learning topics here.
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Our goal is still to develop an algorithm that chooses an arm 𝑎𝑡(𝑥𝑡) to pull based on the
experience gained during the first 𝑡 trials. We will use supervised learning, in particular,
empirical risk minimization (sec. 5.3), to estimate 𝜃𝑘 for each arm. That is, we compute ̂𝜃𝑘

𝑡 as
the vector that minimizes squared error from the observed rewards:

̂𝜃𝑘
𝑡 ∶= arg min

𝜃∈ℝ𝐷
∑

𝑡′∈ℐ𝑘
𝑡

(𝑟𝑡′ − 𝑥⊤
𝑡′𝜃)2, (4.41)

where

ℐ𝑘
𝑡 ∶= {𝑡′ ∈ [𝑡] ∣ 𝑎𝑡′ = 𝑘} (4.42)

denotes the subset of [𝑡] at which arm 𝑘 was pulled. Note that |ℐ𝑘
𝑡 | = 𝑁𝑘

𝑡 as defined in eq. 4.23.
The ERM problem in eq. 4.41 has the closed-form solution known as the ordinary least
squares (OLS) estimator:

̂𝜃𝑘
𝑡 = (Σ̂𝑘

𝑡 )−1 ⎛⎜
⎝

1
𝑁𝑘

𝑡
∑

𝑡′∈ℐ𝑘
𝑡

𝑥𝑡′𝑟𝑡′⎞⎟
⎠

where Σ̂𝑘
𝑡 = 1

𝑁𝑘
𝑡

∑
𝑡′∈ℐ𝑘

𝑡

𝑥𝑡′𝑥⊤
𝑡′ .

(4.43)

Σ̂𝑘
𝑡 is the (biased) empirical covariance matrix of the contexts across the trials where arm 𝑘

was pulled (out of the first 𝑡 trials).

Remark 4.7 (Invertibility). In eq. 4.43, we write the expression (Σ̂𝑘
𝑡 )−1, assuming that Σ̂𝑘

𝑡 is
invertible. This only holds if the context features are linearly independent, that is, there does
not exist some coordinate 𝑑 ∈ [𝐷] that can be written as a linear combination of the other
coordinates. One way to ensure that Σ̂𝑘

𝑡 is invertible is to add a 𝜆𝐼 regularization term to
it. This is equivalent to solving a ridge regression problem instead of the unregularized least
squares problem.

Now, given a sequence of 𝑡 contexts, pulls, and rewards 𝑥0, 𝑎0, 𝑟0, … , 𝑥𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1, we can
estimate 𝜇𝑘(𝑥𝑡) for each arm. This is helpful, but we haven’t yet solved the problem of deciding
which arms to pull in each context to trade off between exploration and exploitation.

The upper confidence bound (UCB) algorithm (def. 4.8) was a useful strategy. What would we
need to adapt UCB to this new setting? Recall that at each step, UCB estimates a confidence
interval for each arm mean, and chooses the arm with the highest upper confidence bound.
We already have an estimator ̂𝜇𝑘

𝑡 (𝑥𝑡) of each arm mean, so all that is left is to compute the
width of the confidence interval itself.
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Theorem 4.7 (LinUCB confidence interval). Suppose we pull each arm once during the first
𝐾 trials. Then at each pull 𝑡 ≥ 𝐾, for all arms 𝑘 ∈ [𝐾] and all contexts 𝑥 ∈ 𝒳, we have that
with probability at least 1 − 1/𝛽2,

𝜇𝑘(𝑥) ∈ [𝑥⊤ ̂𝜃𝑘
𝑡 − 𝛽 𝜎

√𝑁𝑘
𝑡

⋅ √𝑥⊤(Σ̂𝑘
𝑡 )−1𝑥, 𝑥⊤ ̂𝜃𝑘

𝑡 + 𝛽 𝜎
√𝑁𝑘

𝑡
⋅ √𝑥⊤(Σ̂𝑘

𝑡 )−1𝑥] , (4.44)

where

• 𝜎 is the standard deviation of the reward (eq. 4.38),
• 𝑁𝑘

𝑡 is the number of times arm 𝑘 was pulled in the first 𝑡 pulls (eq. 4.23),
• ̂𝜃𝑘

𝑡 is the OLS estimator for arm 𝑘 (eq. 4.43),
• and Σ̂𝑘

𝑡 is the sample covariance matrix of the contexts given arm 𝑘 (eq. 4.43).

We can then plug this interval into the UCB strategy (def. 4.8) to obtain what is known as
the LinUCB algorithm:

Definition 4.10 (LinUCB (L. Li et al., 2010)). LinUCB first pulls each arm once. Then, for
pull 𝑡 ≥ 𝐾, LinUCB chooses an arm according to

𝑎𝑡(𝑥𝑡) ∶= arg max
𝑘∈[𝐾]

𝑥⊤ ̂𝜃𝑘
𝑡 + 𝛽 𝜎

√𝑁𝑘
𝑡

√𝑥⊤
𝑡 (Σ̂𝑘

𝑡 )−1𝑥𝑡, (4.45)

where 𝜎, 𝑁𝑘
𝑡 , ̂𝜃𝑘

𝑡 , Σ̂𝑘
𝑡 are defined as in Theorem 4.7, and 𝛽 > 0 controls the width of the confi-

dence interval (and thereby the exploration-exploitation tradeoff).

The first term is exactly our predicted mean reward ̂𝜇𝑘
𝑡 (𝑥𝑡). We can think of it as the term

encouraging exploitation of an arm if its predicted mean reward is high. The second term is
the width of the confidence interval given by Theorem 4.7. This is the exploration term that
encourages an arm when 𝑥𝑡 is not aligned with the data seen so far, or if arm 𝑘 has not been
explored much and so 𝑁𝑘

𝑡 is small.

Now we prove Theorem 4.7.

Proof. How can we construct the upper confidence bound in Theorem 4.7? Previously, we
treated the pulls of an arm as i.i.d. samples and used Hoeffding’s inequality to bound the
distance of the sample mean, our estimator, from the true mean. However, now our estimator
is not a sample mean, but rather the OLS estimator above eq. 4.43. We will construct the
confidence interval using Chebyshev’s inequality, which gives a confidence interval for the
mean of a distribution based on that distribution’s variance.
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Theorem 4.8 (Chebyshev’s inequality). For a random variable 𝑌 with mean 𝜇 and variance
𝜎2,

|𝑌 − 𝜇| ≤ 𝛽𝜎 with probability ≥ 1 − 1
𝛽2 (4.46)

We want to construct a CI for 𝑥⊤𝜃𝑘, the mean reward from arm 𝑘. Our estimator is 𝑥⊤ ̂𝜃𝑘
𝑡 .

Applying Chebyshev’s inequality requires us to compute the variance of our estimator.

Theorem 4.9 (Variance of OLS). Given the linear reward model in eq. 4.38,

Var(𝑥⊤ ̂𝜃𝑘
𝑡 ) = 𝜎2

𝑁𝑘
𝑡

𝑥⊤(Σ̂𝑡
𝑘)−1𝑥, (4.47)

where Σ̂𝑡
𝑘 is defined in eq. 4.43.

Proof. We leave the proof as an exercise. It follows from applications of the law of iterated
expectations.

Now we can substitute eq. 4.47 into eq. 4.46 to obtain the desired CI:

𝑥⊤
𝑡 𝜃𝑘 ≤ 𝑥⊤

𝑡 ̂𝜃𝑘
𝑡 + 𝛽√𝑥⊤

𝑡 (𝐴𝑘
𝑡 )−1𝑥𝑡 with probability ≥ 1 − 1

𝛽2 (4.48)

4.10 Key takeaways

In this chapter, we explored the multi-armed bandit setting for analyzing sequential decision-
making in an unknown environment. An MAB consists of multiple arms, each with an unknown
reward distribution. The agent’s task is to learn about these through interaction, eventually
minimizing the regret, which measures how suboptimal the chosen arms were.

We saw algorithms such as upper confidence bound and Thompson sampling that handle
the tradeoff between exploration and exploitation, that is, the tradeoff between choosing arms
that the agent is uncertain about and arms the agent already supposes are be good.

We finally discussed contextual bandits, in which the agent gets to observe some context
that affects the reward distributions. We can approach these problems through supervised
learning approaches.
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4.11 Bibliographic notes and further reading

The problem that a bandit algorithm faces after 𝑡 pulls is to infer differences between the
means of a set of distributions given 𝑡 samples spread out across those distributions. This is
a well-studied problem in statistics.

A common practice in various fields such as psychology is to compare within-group variances
to the variance of the group means. This popular class of methods is known as analysis of
variance (ANOVA). It has been studied at least since Laplace in the 1770s (Stigler, 2003) and
was further popularized by Fisher (1925). William Thompson studied the two-armed mean
distinction problem in Thompson (1933) and Thompson (1935). Our focus has been on the
decision-making aspect of the bandit problem, rather than the hypothesis testing aspect.

Adding the sequential decision-making aspect turns the above into the full multi-armed bandit
problem. Wald (1949) studies the sequential analysis problem in depth. Robbins (1952) then
builds on Wald’s work and provides a clear exposition of the bandit problem in the form
presented in this chapter. Berry & Fristedt (1985) is a comprehensive treatment of bandit
problems from a statistical perspective.

Remark 4.8 (Disambiguation of LinUCB). The name “LinUCB” is used for various similar
algorithms throughout the literature. Here we use it as defined in L. Li et al. (2010). This
algorithm was also considered in Auer (2002), the paper that introduced UCB, under the name
“Associative Reinforcement Learning with Linear Value Functions”.
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5 Supervised learning

5.1 Introduction

Supervised learning (SL) is a core subfield of machine learning alongside RL and unsuper-
vised learning. The typical SL task is to approximate an unknown function given a dataset of
input-output examples from that function.

Example 5.1 (Image classification). One of the most common examples of an SL problem is
the task of image classification: Given a dataset of images and their respective labels, construct
a function that takes an image and outputs the correct label.

fig. 5.1 illustrates two samples (that is, input-output pairs) from the MNIST database of
handwritten digits (Deng, 2012). This is a task that most humans can easily accomplish. By
providing many samples of digits and their labels to a machine, SL algorithms can learn to
solve this task as well.

(a) The handwritten digit 5. (b) The handwritten digit 0.

Figure 5.1: The MNIST image classification dataset of 28𝑖𝑚𝑒𝑠28 handwritten digits.

When might function approximation be useful in RL? Recall that the definition of an MDP
includes the state transitions 𝑃 ∶ 𝒮×𝒜 → △(𝒮) and a reward function 𝑟 ∶ 𝒮×𝒜 → ℝ (def. 2.4).
If we know both of these functions, in the sense that we are able to query them on arbitrary
inputs, we can use powerful planning algorithms to solve for the optimal policy exactly (see
sec. 2.3.2). Thus, if either (or both) of these is not known, we can use an SL algorithm to
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model the environment and then solve the modeled environment using dynamic programming.
This approach is called fitted DP and will be covered in Chapter 6.

We do not seek to comprehensively discuss supervised learning; see the bibiographic notes
at the end of the chapter (sec. 5.6) for further resources. We hope to to leave you with an
understanding of what types of problems SL can solve and how SL algorithms can be applied
to RL.

5.2 The supervised learning task

In SL, we are given a dataset of labelled samples (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁) that are independently
sampled from some data generating process. Mathematically, we describe this data gener-
ating process as a joint distribution 𝑝 ∈ △(𝒳 × 𝒴), where 𝒳 is the space of possible inputs
and 𝒴 is the space of possible outputs. Note that, by the chain rule of probability, this can be
factored as 𝑝(𝑥, 𝑦) = 𝑝(𝑦 ∣ 𝑥)𝑝(𝑥).

Example 5.2 (Joint distributions for image classification). For example, in ex. 5.1, the
marginal distribution over 𝑥 is assumed to be the distribution of handwritten digits by hu-
mans, scanned as 28 × 28 grayscale images. The conditional distribution 𝑦 ∣ 𝑥 is assumed to
be the distribution over {0, … , 9} that a human would assign to the image 𝑥.

Our task is to compute a “good” prediction rule ̂𝑓 ∶ 𝒳 → 𝒴 that takes an input and tries to
predict the corresponding output.

5.2.1 Loss functions

How can we measure how “good” a prediction rule is? The most common way is to use a loss
function ℓ ∶ 𝒴 × 𝒴 → ℝ that compares the guess ̂𝑦 ∶= ̂𝑓(𝑥) with the true output 𝑦. ℓ( ̂𝑦, 𝑦)
should be low if the prediction rule accurately guessed the output, and high if the prediction
was incorrect.

Example 5.3 (Zero-one loss). In the image classification task ex. 5.1, we have 𝑋 = [0, 1]28×28

(the space of 28-by-28 grayscale images) and 𝑌 = {0, … , 9} (the image’s label). We could use
the zero-one loss function,

ℓ( ̂𝑦, 𝑦) = {0 ̂𝑦 = 𝑦
1 ̂𝑦 ≠ 𝑦 (5.1)

to measure the accuracy of the prediction rule. That is, if the prediction rule assigns the wrong
label to an image, it incurs a loss of one for that sample.
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Example 5.4 (Square loss). For a continuous output (i.e. 𝒴 ⊆ ℝ), we typically use the
squared difference as the loss function:

ℓ( ̂𝑦, 𝑦) = ( ̂𝑦 − 𝑦)2 (5.2)

The square loss is nice to work with analytically since its derivative with respect to ̂𝑦 is simply
2( ̂𝑦 − 𝑦). (Sometimes authors define the square loss as half of the above value to cancel the
factor of 2 in the derivative. Generally speaking, scaling the loss by some constant scalar has
no practical effect.)

Figure 5.2: Square loss.

5.2.2 Model selection

Ultimately, we want a prediction rule that does well on new, unseen samples from the data gen-
erating process. We can thus ask, how much loss does the prediction rule incur in expectation?
This is called the prediction rule’s generalization error or test error.

Definition 5.1 (Generalization error). Given a loss function ℓ and a prediction rule ̂𝑓 , the gen-
eralization error of the prediction rule is defined as the expected loss over the data generating
process.
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errorg( ̂𝑓) ∶= 𝔼
(𝑥,𝑦)∼𝑝

[ℓ( ̂𝑓(𝑥), 𝑦)] (5.3)

Suppose we sample a new input and output from the data generating process, make a guess
according to our prediction rule, and use the loss function to compare our guess to the true
output. If we repeat this many times, the average loss would approach the generalization error.

The goal of SL is then to find the prediction rule that minimizes the test error. For certain loss
functions, the theoretical optimum can be analytically computed, such as for squared error.

Theorem 5.1 (The conditional expectation minimizes mean squared error). An important
result is that, under the square loss, the optimal prediction rule is the conditional expecta-
tion:

arg min
𝑓

𝔼[(𝑦 − 𝑓(𝑥))2] = (𝑥 ↦ 𝔼[𝑦 ∣ 𝑥]) (5.4)

Proof. We can decompose the mean squared error as

𝔼[(𝑦 − 𝑓(𝑥))2] = 𝔼[(𝑦 − 𝔼[𝑦 ∣ 𝑥] + 𝔼[𝑦 ∣ 𝑥] − 𝑓(𝑥))2]
= 𝔼[(𝑦 − 𝔼[𝑦 ∣ 𝑥])2] + 𝔼[(𝔼[𝑦 ∣ 𝑥] − 𝑓(𝑥))2]

+ 2 𝔼[(𝑦 − 𝔼[𝑦 ∣ 𝑥])(𝔼[𝑦 ∣ 𝑥] − 𝑓(𝑥))]
(5.5)

We leave it as an exercise to show that the last term is zero. (Hint: use the law of iterated
expectations.) The first term is the noise, or irreducible error, that doesn’t depend on 𝑓 ,
and the second term is the error due to the approximation, which is minimized at 0 when
𝑓(𝑥) = 𝔼[𝑦 ∣ 𝑥].

In most applications, such as in ex. 5.2, we can’t integrate over the joint distribution of 𝑥, 𝑦,
and so we can’t evaluate 𝔼[𝑦 ∣ 𝑥] analytically. Instead, all we get are 𝑁 samples from the joint
distribution of 𝑥 and 𝑦. How might we use these to approximate the generalization error?

5.3 Empirical risk minimization

To estimate the generalization error, we could simply take the sample mean of the loss over
the training data. This is called the training loss or empirical risk:

89



Definition 5.2 (Empirical risk). Given a dataset (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁) sampled i.i.d. from the
data generating process, and a loss function ℓ, the empirical risk of the prediction rule ̂𝑓 is the
average loss across the dataset:

training loss( ̂𝑓) ∶= 1
𝑁

𝑁
∑
𝑛=1

ℓ( ̂𝑓(𝑥𝑛), 𝑦𝑛). (5.6)

By the law of large numbers, as 𝑁 grows to infinity, the training loss converges to the gener-
alization error (def. 5.1).

The empirical risk minimization (ERM) approach is to find a prediction rule that minimizes
the empirical risk.

Definition 5.3 (Empirical risk minimization). An ERM algorithm requires two ingredients
to be chosen based on our domain knowledge about the DGP:

1. A function class ℱ, that is, the space of functions to consider.
2. A fitting method that uses the dataset to find the element of ℱ that minimizes the

training loss.

This allows us to compute the empirical risk minimizer:

̂𝑓ERM ∶= arg min
𝑓∈ℱ

training loss(𝑓)

= arg min
𝑓∈ℱ

1
𝑁

𝑁
∑
𝑛=1

ℓ(𝑓(𝑥𝑛), 𝑦𝑛).
(5.7)

5.3.1 Function classes

How should we choose the correct function class? In fact, why do we need to constrain our
search at all?

Exercise 5.1 (Overfitting). Suppose we are trying to approximate a relationship between
real-valued inputs and outputs using square loss as our loss function. Consider the prediction
rule (visualized in fig. 5.3)

̂𝑓(𝑥) =
𝑁

∑
𝑛=1

𝑦𝑛1 {𝑥 = 𝑥𝑛} . (5.8)

What is the empirical risk of this function? How well does it perform on newly generated
samples?
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(a) One training dataset. (b) Another training dataset.

Figure 5.3: A pathological prediction rule.

The choice of ℱ depends on our domain knowledge about the task. On one hand, ℱ
should be large enough to contain the true relationship, but on the other, it shouldn’t be
too expressive; otherwise, it will overfit to random noise in the labels. The larger and more
complex the function class, the more accurately we will be able to approximate any particular
training dataset (i.e. smaller bias), but the more drastically the function will vary for different
training datasets (i.e. larger variance). For most loss functions, including the square loss, it
is possible to express the generalization error (def. 5.1) as a sum of a bias term and a variance
term. The mathematical details of this so-called bias-variance tradeoff can be found, for
example, in Hastie et al. (2013, Chapter 2.9).

(a) Degree 2 polynomials (b) Degree 5 polynomials (c) Degree 50 polynomials

Figure 5.4: Demonstrating the bias-variance tradeoff through polynomial regression. Increas-
ing the degree increases the complexity of the polynomial function class.

We must also consider practical constraints on the function class. We need an efficient algo-
rithm to actually compute the function in the class that minimizes the training error. This
point should not be underestimated! The success of modern deep learning, for example, is
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in large part due to hardware developments that have made certain operations more efficient
than others.

5.3.2 Parameterized function classes

Both of the function classes we will consider, linear maps and neural networks, are finite-
dimensional, a.k.a. parameterized. The notion of a parameterized function class is best
illustrated by example:

Example 5.5 (Quadratic functions). consider the class of quadratic functions, i.e. polyno-
mials of degree 2. This is a three-dimensional function space (𝐷 = 3), since we can describe
any quadratic 𝑝 as

𝑝(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, (5.9)

where 𝑎, 𝑏, 𝑐 are the three parameters. We could also use a different parameterization:

𝑝(𝑥) = 𝑎′(𝑥 − 𝑏′)2 + 𝑐′. (5.10)

Definition 5.4 (Parameters). Let ℱ be a class of functions mapping from 𝒳 to 𝒴. We say that
ℱ is a parameterized function class if each 𝑓 ∈ ℱ can be identified using 𝐷 parameters.

Exercise 5.2 (Parameterization matters). Note that the choice of parameterization can im-
pact the performance of the chosen fitting method. What is the derivative of eq. 5.9 with
respect to 𝑎, 𝑏, 𝑐? Compare this to the derivative of eq. 5.10 with respect to 𝑎′, 𝑏′, 𝑐′. This
shows that gradient-based fitting methods may change their behaviour depending on the pa-
rameterization.

Using a parameterized function class allows us to reframe the ERM problem def. 5.3 in terms
of optimizing over the parameters instead of over the functions they represent:

̂𝜃ERM ∶= arg min
𝜃∈ℝ𝐷

training loss(𝑓𝜃)

= 1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑓𝜃(𝑥𝑛))2
(5.11)

In general, optimizing over a finite-dimensional space is much, much easier than optimizing
over an infinite-dimensional space.
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5.3.3 Gradient descent

One widely applicable fitting method for parameterized function classes is gradient de-
scent.

Let 𝐿(𝜃) = training loss(𝑓𝜃) denote the empirical risk in terms of the parameters. The gradi-
ent descent algorithm iteratively updates the parameters according to the rule

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐿(𝜃𝑡)

where 𝜂 > 0 is the learning rate and ∇𝜃𝐿(𝜃𝑡) indicates the gradient of 𝐿 at the point 𝜃𝑡.
Recall that the gradient of a function at a point is a vector in the direction that increases the
function’s value the most within a neighborhood. So by taking small steps in the oppposite
direction, we obtain a solution that achieves a slightly lower loss than the current one.

In sec. 7.3.1, we will discuss methods for implementing the grad function above, which takes
in a function and returns its gradient, which can then be evaluated at a point.

Why do we need to scale down the step size by 𝜂? The key word above is “neighborhood”.
The gradient only describes the function within a local region around the point, whose size
depends on the function’s smoothness. If we take a step that’s too large, we might end up
with a worse solution by overshooting the region where the gradient is accurate. Note that, as
a result, we can’t guarantee finding a global optimum of the function; we can only find local
optima that are the best parameters within some neighborhood.

Another issue is that it’s often expensive to compute ∇𝜃𝐿 when 𝑁 is very large. Instead of
calculating the gradient for every point in the dataset and averaging these, we can simply draw
a batch of samples from the dataset and average the gradient across just these samples. Note
that this is an unbiased random estimator of the true gradient. This algorithm is known as
stochastic gradient descent. The added noise sometimes helps to jump to better solutions
with a lower overall empirical risk.

Stepping for a moment back into the world of RL, you might wonder, why can’t we simply apply
gradient descent to the total reward? It turns out that the gradient of the total reward with
respect to the policy parameters known as the policy gradient, is challenging but possible
to approximate. In Chapter 7, we will do exactly this.

5.4 Examples of parameterized function classes

5.4.1 Linear regression

In linear regression, we assume that the function 𝑓 is linear in the parameters:
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ℱ = {𝑥 ↦ 𝜃⊤𝑥 ∣ 𝜃 ∈ ℝ𝐷}

You may already be familiar with linear regression from an introductory statistics course. This
function class is extremely simple and only contains linear functions, whose graphs look like
“lines of best fit” through the training data. It turns out that, when minimizing the squared
error, the empirical risk minimizer has a closed-form solution, known as the ordinary least
squares estimator. Let us write 𝑌 = (𝑦1, … , 𝑦𝑛)⊤ ∈ ℝ𝑁 and 𝑋 = (𝑥1, … , 𝑥𝑁)⊤ ∈ ℝ𝑁×𝐷.
Then we can write

̂𝜃 = arg min
𝜃∈ℝ𝐷

1
2

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝜃⊤𝑥𝑛)2

= arg min
𝜃∈ℝ𝐷

1
2‖𝑌 − 𝑋𝜃‖2

= (𝑋⊤𝑋)−1𝑋⊤𝑌 ,

(5.12)

where we have assumed that the columns of 𝑋 are linearly independent so that the matrix
𝑋⊤𝑋 is invertible.

What happens if the columns aren’t linearly independent? In this case, out of the possible
solutions with the minimum empirical risk, we typically choose the one with the smallest
norm.

Exercise 5.3 (Gradient descent finds the minimum norm solution). Gradient descent on the
ERM problem (eq. 5.12), initialized at the origin and using a small enough step size, eventually
finds the parameters with the smallest norm. In practice, since the squared error gradient is
convenient to compute, running gradient descent can be faster than explicitly computing the
inverse (or pseudoinverse) of a matrix.

Assume that 𝑁 < 𝐷 and that the data points are linearly independent.

1. Let ̂𝜃 be the solution found by gradient descent. Show that ̂𝜃 is a linear combination of
the data points, that is, ̂𝜃 = 𝑋⊤𝑎, where 𝑎 ∈ ℝ𝑁 .

2. Let 𝑤 ∈ ℝ𝐷 be another empirical risk minimizer i.e. 𝑋𝑤 = 𝑦. Show that ̂𝜃⊤(𝑤 − ̂𝜃) = 0.

3. Use this to show that ‖ ̂𝜃‖ ≤ ‖𝑤‖, showing that the gradient descent solution has the
smallest norm out of all solutions that fit the data. (No need for algebra; there is a nice
geometric solution!)

Though linear regression may appear trivially simple, it is a very powerful tool for more
complex models to build upon. For instance, to expand the expressiveness of linear models,
we can first transform the input 𝑥 using some feature mapping 𝜙, i.e. ̃𝑥 = 𝜙(𝑥), and then fit a
linear model in the transformed space instead. By using domain knowledge to choose a useful
feature mapping, we can obtain a powerful SL method for a particular task.
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5.4.2 Neural networks

In neural networks, we assume that the function 𝑓 is a composition of linear functions (repre-
sented by matrices 𝑊𝑖) and non-linear activation functions (denoted by 𝜎):

ℱ = {𝑥 ↦ 𝜎(𝑊𝐿𝜎(𝑊𝐿−1 … 𝜎(𝑊1𝑥 + 𝑏1) ⋯ + 𝑏𝐿−1) + 𝑏𝐿)}

where 𝑊ℓ ∈ ℝ𝐷ℓ+1×𝐷ℓ and 𝑏ℓ ∈ ℝ𝐷ℓ+1 are the parameters of the 𝑖-th layer, and 𝜎 is the
activation function.

This function class is highly expressive and allows for more parameters. This makes it more
susceptible to overfitting on smaller datasets, but also allows it to represent more complex
functions. In practice, however, neural networks exhibit interesting phenomena during training,
and are often able to generalize well even with many parameters.

Another reason for their popularity is the efficient backpropagation algorithm for comput-
ing the gradient of the output with respect to the parameters. Essentially, the hierarchical
structure of the neural network, i.e. computing the output of the network as a composition of
functions, allows us to use the chain rule to compute the gradient of the output with respect
to the parameters of each layer.

5.5 Key takeaways

Supervised learning is a field of machine learning that seeks to approximate some unknown
function given a dataset of example input-output pairs from that function. In particular, we
typically seek to compute a prediction rule that takes in an input value and returns a good
guess for the corresponding output. We score prediction rules using a loss function that
measures how incorrectly it guesses. We want to find a prediction rule that achieves low loss
on unseen data points. We do this by searching over a class of functions to find one that
minimizes the empirical risk over the training dataset. We finally saw two popular examples
of parameterized function classes: linear regression and neural networks.

5.6 Bibliographic notes and further reading

Supervised learning is the largest subfield of machine learning; we do not attempt to compre-
hensively survey recent progress here. Rather, here are some textbooks for interested students
to read further.

James et al. (2023) provides an accessible introduction to supervised learning. Hastie et al.
(2013) examines the subject in even further depth and covers many relevant supervised learn-
ing methods. Nielsen (2015) provides a comprehensive introduction to neural networks and
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backpropagation. Vapnik (2000) is another prominent textbook on classical statistical learning
from before the “deep learning era”. Bishop (2006) focuses on the Bayesian perspective.
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6 Fitted Dynamic Programming Algorithms

In Chapter 2, we discussed how to solve known tabular Markov decision processes where the
state and action spaces 𝒮 and 𝒜 were finite and small and we knew the reward function and
state transitions of the environment. For most interesting tasks, however, we don’t know the
analytical form of the reward functions or state transitions. In such settings, we must learn
through interaction with the environment.

Remark 6.1 (Tackling unknown environments). How can we deal with an unknown environ-
ment? One way is to learn a model of the environment, that is, approximations of the reward
function and state transitions. We can then plan in the model environment. This is the
model-based approach. If the approximation is good enough, the optimal policy in the
model environment will be near-optimal in the true environment.

Instead of learning a model and planning within it, we could also try to learn the optimal value
function and/or optimal policy directly. Such model-free methods are popular in practice,
though they generally require many more samples.

In this short chapter, we will tackle the full RL problem by extending DP algorithms to
account for unknown environments. We will also relax the assumption that the state space is
small and finite: the methods we will cover support large or continuous state spaces by using
parameterized function approximation. This will require learning about the environment by
collecting data through interaction and then applying supervised learning (see Chapter 5) to
approximate relevant functions.

Each of the algorithms we’ll cover is analogous to one of the algorithms from Chapter 2:

Table 6.1: Fitted algorithms for general environments.

Algorithm Description Fitted version
Policy evaluation
(sec. 2.4.3)

Given a policy 𝜋, compute its value
function 𝑉 𝜋 by iterating the Bellman
consistency equations.

Fitted policy evaluation
(sec. 6.1)

Value iteration
(sec. 2.4.4.1)

Compute the optimal value function 𝑉 ⋆

by iterating the Bellman optimality
equations.

Fitted value iteration
(sec. 6.2)

Policy iteration
(sec. 2.4.4.2)

Repeatedly make the policy 𝜋 greedy
with respect to its own Q function.

Fitted policy iteration
(sec. 6.3)
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The term “fitted” means that, since we can no longer compute the Bellman consistency equa-
tions or Bellman optimality equations exactly, we plug data from the environment into a
supervised learning algorithm to approximately solve these equations. As such, these are also
termed “approximate DP” algorithms, or “neuro-DP” algorithms, as in Bertsekas & Tsitsiklis
(1996). We will also introduce some useful language for classifying RL algorithms.

Remark 6.2 (Notation). To simplify our notation, we will assume that each state 𝑠 includes
the current timestep ℎ. That is, if the original state space was 𝒮, the augmented state space
is 𝒮 × [𝐻]. This allows us to treat all state-dependent quantities as time-dependent without
explicitly carrying around a subscript ℎ. This also holds true in most real-world episodic tasks,
where the state conveys how many timesteps have passed. For example, in tic-tac-toe, one can
simply count the number of moves on the board.

6.1 Fitted policy evaluation

Recall the task of policy evaluation: given a policy 𝜋 ∶ 𝒮 → △(𝒜), compute its Q function 𝑄𝜋,
which expresses the expected total reward in a given starting state-action pair.

Remark 6.3 (Value function vs Q function). In Chapter 2, we sought to compute the value
function 𝑉 𝜋. Here, we’ll instead approximate the action-value function 𝑄𝜋, since we’ll need
the ability to take the action with the maximum expected remaining reward. If we don’t know
the environment, we can’t compute the action-values using only 𝑉 𝜋.

Remark 6.4 (Fixed-point policy evaluation review). The fixed-point policy evaluation algo-
rithm (sec. 2.4.3.2) makes use of the Bellman consistency equations (Theorem 2.3), restated
here for the Q-function:

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃(⋅∣𝑠,𝑎)
𝑎′∼𝜋(⋅∣𝑠′)

[𝑄𝜋(𝑠′, 𝑎′)]. (6.1)

In fixed-point iteration, we treat eq. 6.1 not as an equation, but as an “operator” that takes
in a function 𝑞𝑖 ∶ 𝒮 × 𝒜 → ℝ and returns an updated function 𝑞𝑖+1 by substituting 𝑞𝑖 in place
of 𝑄𝜋.

𝑞𝑖+1(𝑠, 𝑎) ∶= 𝑟(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃(⋅∣𝑠,𝑎)
𝑎′∼𝜋(⋅∣𝑠′)

[𝑞𝑖(𝑠′, 𝑎′)]. (6.2)

Roughly speaking, 𝑞𝑖+1 approximates 𝑄𝜋 slightly better than 𝑞𝑖 since it incorporates a single
step of reward from the environment. Since this operator is a contraction mapping (Theo-
rem 2.8), by iterating this process, 𝑞 will eventually converge to the true policy 𝑄𝜋.
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However, computing the update step in eq. 6.2 requires computing an expectation over the
state transitions 𝑠′ ∼ 𝑃(⋅ ∣ 𝑠, 𝑎). As mentioned in the introduction, this is intractable for
most real-world tasks. Either the state space is too large, or we simply don’t know what 𝑃
is. Instead, we will apply supervised learning methods to approximately solve the Bellman
consistency equations using data.

Recall that supervised learning is good at learning conditional expectations of the form

𝑓(𝑥) = 𝔼[𝑦 ∣ 𝑥], (6.3)

where 𝑥 are the input features and 𝑦 is the scalar response. Can we rewrite the one-step value
target (eq. 6.1) as a conditional expectation? In fact, it already is! Let us use notation that
makes this more clear. We explicitly treat 𝑠′, 𝑎′ as random variables and move the conditioning
on 𝑠, 𝑎 into the brackets:

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟(𝑠, 𝑎) + 𝑄𝜋(𝑠′, 𝑎′) ∣ 𝑠, 𝑎]. (6.4)

We can see that the input 𝑥 corresponds to 𝑠, 𝑎 and the response 𝑦 corresponds to 𝑟(𝑠, 𝑎) +
𝑞𝑖(𝑠′, 𝑎′), where 𝑞𝑖 is our current estimate of 𝑄𝜋. Now we just need to obtain a dataset of input-
output pairs and run empirical risk minimization (sec. 5.3). We can classify data collection
strategies as either offline or online.

Definition 6.1 (Offline and online algorithms). We say that a learning algorithm works
offline if the learning is performed as a function of a static dataset, without requiring further
interaction with the environment. In contrast, online learning algorithms require interaction
with the environment during learning.

We’ll begin with an offline version of fitted policy evaluation and then see an online version.

6.1.1 Offline fitted policy evaluation

In particular, we use 𝜋, the policy we’re trying to evaluate, to obtain a dataset of 𝑁 trajectories
𝜏1, … , 𝜏𝑁 ∼ 𝜌𝜋. Let us indicate the trajectory index in the superscript, so that

𝜏𝑛 = {𝑠𝑛
0 , 𝑎𝑛

0 , 𝑟𝑛
0 , 𝑠𝑛

1 , 𝑎𝑛
1 , 𝑟𝑛

1 , … , 𝑠𝑛
𝐻−1, 𝑎𝑛

𝐻−1, 𝑟𝑛
𝐻−1}. (6.5)

This would give us 𝑁(𝐻 − 1) samples in the dataset. We subtract one from the horizon since
each (𝑥, 𝑦) sample requires a pair of consecutive timesteps:

𝑥𝑛
ℎ = (𝑠𝑛

ℎ, 𝑎𝑛
ℎ) 𝑦𝑛

ℎ = 𝑟(𝑠𝑛
ℎ, 𝑎𝑛

ℎ) + 𝑞𝑖(𝑠𝑛
ℎ+1, 𝑎𝑛

ℎ+1) (6.6)
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where 𝑞𝑖 is our current estimate of 𝑄𝜋. This makes our new algorithm a fixed-point algorithm
as well, since it uses 𝑞𝑖 to compute the next iterate 𝑞𝑖+1.

Now we can use empirical risk minimization to find a function 𝑞𝐼 that approximates the optimal
Q-function.

Figure 6.1: Fitted policy evaluation.

Definition 6.2 (Fitted policy evaluation). Let 𝜋 ∶ 𝒮 → △(𝒜) be the policy we wish to
evaluate. Our goal is to compute an approximation of its Q-function 𝑄𝜋.

1. Collect a dataset 𝜏1, … , 𝜏𝑁 ∼ 𝜌𝜋.
2. Initialize some function 𝑞0 ∶ 𝒮 × 𝒜 ∈ ℝ.
3. For 𝑖 = 0, … , 𝐼 − 1:

1. Generate labels 𝑦1, … , 𝑦𝑁 from the trajectories and the current estimate 𝑞𝑖, where
the labels come from eq. 6.1.

2. Set 𝑞𝑖+1 to the function that minimizes the empirical risk:

𝑞 ← arg min
𝑞

1
𝑁𝐻

𝑁
∑
𝑛=1

𝐻−2
∑
ℎ=1

(𝑦𝑛
ℎ − 𝑞(𝑥𝑛

ℎ))2. (6.7)

function fitted_evaluation(trajectories ∶ listTrajectory, fit ∶ FittingMethod, 𝜋 ∶ Policy, epochs ∶ ℤ, 𝑄init ∶ QFunction)
” Run fitted policy evaluation using the given dataset. Returns an estimate of the Q-function of the given policy. ”
𝑄 ← 𝑄init
𝑋 ← get_X(trajectories)
for epoch ∈ tqdm(range(epochs)) do

𝑦 ← get_y(trajectories, 𝑄, 𝜋)
𝑄 ← fit(𝑋, 𝑦)

end for
return 𝑄

end function

Fitted policy evaluation is offline since the “interaction phase” and the “learning phase” are
disjoint. In other words, we can think of fitted policy evaluation as taking a dataset of tra-
jectories collected by some unknown policy 𝜋data, and then approximating the Q function of
𝜋data.

Fitted policy evaluation is on-policy because the update rule uses trajectories sampled from 𝜋.
Where do we need this assumption? Pay close attention to the target, and compare it to the
true one-step value target (eq. 6.1):
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𝑦ℎ = 𝑟(𝑠ℎ, 𝑎ℎ) + 𝑞(𝑠ℎ+1, 𝑎ℎ+1)
𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼

𝑠′∼𝑃(⋅∣𝑠,𝑎)
𝑎′∼𝜋(⋅∣𝑠′)

𝑄𝜋(𝑠′, 𝑎′). (6.8)

Notice that (𝑠ℎ+1, 𝑎ℎ+1) is a single sample from the joint distribution 𝑠′ ∼ 𝑃(⋅ ∣ 𝑠, 𝑎) and
𝑎′ ∼ 𝜋(⋅ ∣ 𝑠′). If the trajectories were collected from a different policy, then 𝑎ℎ+1 would not be
a sample from 𝜋(⋅ ∣ 𝑠′), making the target a biased sample for evaluating 𝜋.

Definition 6.3 (On-policy and off-policy algorithms). We say that a learning algorithm is
on-policy if the update rule must use data collected by the current policy. On the other hand,
we call a learning algorithm off-policy if its update rule doesn’t care about how the data was
collected.

Exercise 6.1 (Off-policy fitted policy evaluation). Now suppose you are given a dataset of
trajectories sampled from a policy 𝜋data, and you want to evaluate a different policy 𝜋. You are
not given access to the environment. How could you use the dataset to evaluate 𝜋? Explain
what makes this an off-policy algorithm.

6.1.2 Bootstrapping and target networks

Using the current guess 𝑞 to compute the labels is known as bootstrapping. (This has
nothing to do with the term bootstrapping in statistical inference.)

This term comes from the following metaphor: if you are trying to get on a horse, and there’s
nobody to help you up, you need to “pull yourself up by your bootstraps,” or in other words,
start from your existing resources to build up to something more effective.

Using a bootstrapped estimate makes the optimization more complicated. Since we are con-
stantly updating our Q function estimate, the labels are also constantly changing, destabilizing
learning. Sutton & Barto (2018) calls bootstrapping one prong of the deadly triad of deep
reinforcement learning, alongside function approximation and off-policy learning. When
an algorithm relies on all three of these properties, it is possible for learning to diverge, so that
the fitted Q function is far from the true Q function (van Hasselt et al., 2018).

Many tricks exist to mitigate this issue in practice. One such trick is to use a target network.
That is, when computing 𝑦, instead of using 𝑞, which is constantly changing, we maintain
another target network 𝑞target that “updates more slowly.” Concretely, 𝑞target is an exponential
moving average of the iterates of 𝑞. Whenever we update 𝑞, we update 𝑞target accordingly:

𝑞target ← (1 − 𝜆target)𝑞target + 𝜆target𝑞, (6.9)

where 𝜆target ∈ (0, 1) is some mixing parameter: the larger it is, the more we update towards
the current estimate 𝑞.
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6.1.3 Online fitted policy evaluation

In the offline algorithm above, we collect the whole dataset before starting the learning process.
What could go wrong with this? Since the environment is unknown, the dataset only contains
information about some portion of the environment. When we update 𝑞, it may only learn to
approximate 𝑄𝜋 well for states that are in the initial dataset. It would be much better if 𝑞
were accurate in states that the policy will actually find itself in. This leads to the following
simple shift: collect trajectories inside the iteration loop! This results in an online algorithm
for fitted policy evaluation, also known as TD(0).

function fitted_policy_evaluation_online(env, 𝜋 ∶ Policy, epochs ∶ ℤ, learning_rate ∶ ℝ, 𝑞init)
𝑞 ← 𝑞init
for epoch ∈ range(epochs) do

trajectory ← collect_data(env)
for ((𝑠, 𝑎, 𝑟) , (𝑠next, 𝑎next, _)) ∈ zip(trajectory∶−1, trajectory1∶) do

target ← 𝑟 + 𝑞𝑠next,𝑎next
𝑞𝑠,𝑎 ← 𝑞𝑠,𝑎 − learning_rate ⋅ (𝑞𝑠,𝑎 − target)

end for
end for
return 𝑞

end function

Figure 6.2: Pseudocode for online policy evaluation (TD(0))

Note that we explicitly write out one step of gradient descent on the squared “temporal
difference error”.

Remark 6.5 (On notation). What does TD(0) stand for? This notation suggests the existence
of other TD(𝜆) algorithms. In fact, TD(𝜆) is a well-studied algorithm with a parameter
𝜆 ∈ [0, 1], and TD(0) is simply the special case 𝜆 = 0. TD stands for “temporal difference”:
we use the value function at a different point in time to estimate the value of the current
state at the current time step. The parameter 𝜆 is one way to average between the near-term
estimates and the long-term estimates at later timesteps.

6.2 Fitted value iteration

We’ll now explore an algorithm for computing the optimal value function 𝑉 ⋆ when the envi-
ronment is unknown. This method is analogous to value iteration (sec. 2.4.4.1), except instead
of solving the Bellman optimality equations (eq. 2.38) exactly, which would require full knowl-
edge of the environment, we will collect a dataset of trajectories and apply supervised learning
to solve the Bellman optimality equations approximately. This is exactly analogous to fitted
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policy evaluation (sec. 6.1), except we use the Bellman optimality equations (eq. 2.38) instead
of the Bellman consistency equations (eq. 2.9) for a given policy.

Table 6.2: How fitted value iteration relates to existing algorithms.

Known environment Unknown environment
Bellman consistency
equations (evaluation)

Policy evaluation Fitted policy evaluation

Bellman optimality equations
(optimization)

Value iteration Fitted value iteration

Remark 6.6 (Value iteration review). Value iteration was an algorithm we used to compute
the optimal value function 𝑉 ⋆ ∶ 𝒮 → ℝ in an infinite-horizon MDP (sec. 2.4.4.1). Here, we will
present the equivalent algorithm for the optimal action-value function 𝑄⋆ ∶ 𝒮 × 𝒜 → ℝ. The
optimal action-value function satisfies the Bellman optimality equations

𝑄⋆(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃(⋅∣𝑠,𝑎)

[max
𝑎′∈𝒜

𝑄⋆(𝑠′, 𝑎′)]. (6.10)

Now let us treat eq. 6.10 as an “operator” instead of an equation, that is,

𝑞(𝑠, 𝑎) ← 𝑟(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃(⋅∣𝑠,𝑎)

[max
𝑎′∈𝒜

𝑞(𝑠′, 𝑎′)]. (6.11)

If we start with some guess 𝑞 ∶ 𝒮 × 𝒜 → ℝ, and repeatedly apply the update step eq. 6.11, the
iterates will eventually converge to 𝑄⋆ since eq. 6.11 is a contraction mapping.

When we can’t compute expectations over 𝑠′ ∼ 𝑃(⋅ ∣ 𝑠, 𝑎), we can instead apply supervised
learning to approximately solve the Bellman optimality equations. As before, we can write 𝑄⋆

explicitly as a conditional expectation

𝑄⋆(𝑠, 𝑎) = 𝔼 [𝑟(𝑠, 𝑎) + max
𝑎′∈𝒜

𝑄⋆(𝑠′, 𝑎′) ∣ 𝑠, 𝑎] . (6.12)

From this expression, we can read off the inputs 𝑥 and the targets 𝑦 for supervised learning.
As before, since we don’t know 𝑄⋆, we replace it with our current guess 𝑞 ≈ 𝑄⋆:

𝑥 ∶= (𝑠, 𝑎)
𝑦 ∶= 𝑟(𝑠, 𝑎) + max

𝑎′∈𝒜
𝑞(𝑠′, 𝑎′). (6.13)
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The only difference from fitted policy evaluation (sec. 6.1) is how we compute the targets 𝑦.
Instead of using the next action from the trajectory, we use the action with the maximum
value. Notice that these equations don’t reference a policy anywhere! In other words, fitted
value iteration is an off-policy algorithm.

Figure 6.3: Fitted policy evaluation.

6.2.1 Offline fitted value iteration

To construct an offline algorithm, we take some dataset of trajectories, and then do all of the
learning without ever interacting with the environment.

Definition 6.4 (Fitted value iteration). Suppose we have some dataset of trajectories
𝜏1, … , 𝜏𝑁 collected by interacting with the environment.

1. Initialize some function 𝑞0(𝑠, 𝑎, ℎ) ∈ ℝ.
2. Compute 𝑥𝑛

ℎ = (𝑠𝑛
ℎ, 𝑎𝑛

ℎ).
3. For 𝑡 = 0, … , 𝑇 − 1:

1. Use 𝑞𝑡 to generate the targets

𝑦𝑛
ℎ = 𝑟𝑛

ℎ + max
𝑎′

𝑞𝑡(𝑠𝑛
ℎ, 𝑎′). (6.14)

2. Set 𝑞𝑡+1 to the function that minimizes the empirical risk:

𝑓𝑡+1 ← arg min
𝑓

1
𝑁(𝐻 − 1)

𝑁
∑
𝑛=1

𝐻−2
∑
ℎ=0

(𝑦𝑛
ℎ − 𝑓(𝑥𝑛

ℎ))2, (6.15)

6.2.2 Q-learning

In fitted value iteration (fig. 6.4), we collect the whole dataset beforehand from some unknown
policy (or policies). This doesn’t interact with the environment during the learning process.
What could go wrong? Since the environment is unknown, the dataset only contains informa-
tion about some portion of the environment. When we update 𝑞, it may therefore only learn to
approximate 𝑄⋆ well for states that are in the initial dataset. It would be much better if 𝑞 was
accurate in states that the policy will actually find itself in. Given access to the environment,
we can instead collect trajectories while learning. This turns fitted value interation into an
online algorithm known as Q-learning.
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function fitted_q_iteration(trajectories, fit, epochs, 𝑄init)
𝑄 ← 𝑄init ∨ 𝑄zero(get_num_actions(trajectories))
𝑋 ← get_X(trajectories)
for _ ∈ range(epochs) do

𝑦 ← get_y(trajectories, 𝑄)
𝑄 ← fit(𝑋, 𝑦)

end for
return 𝑄

end function

Figure 6.4: Pseudocode for fitted value iteration.

Figure 6.5: Fitted value iteration

Figure 6.6: Q learning
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function Q-learning(env, 𝑄init, epochs ∶ ℤ)
𝑞 ← 𝑄init
for _ ∈ range(epochs) do

trajectories ← collect_trajectories(env, EpsilonGreedyPolicy(𝜃))
𝑋 ← get_X(trajectories)
𝑦 ← get_y(trajectories, 𝑞)
𝑞 ← fit(𝑋, 𝑦)

end for
return 𝑞

end function

Note that it doesn’t actually matter how the trajectories are collected, making Q-learning an
off-policy algorithm. One common choice is to collect trajectories using an epsilon-greedy
policy with respect to the current guess 𝑞.

Another common trick used in practice is to grow the dataset, called a replay buffer, at each
iteration. Then, in the improvement step, we randomly sample a batch of (𝑥, 𝑦) samples from
the replay buffer and use these for empirical risk minimization.

function 𝑞learning(env, 𝑄init, epochs ∶ ℤ)
𝑞 ← 𝑄init
for _ ∈ range(epochs) do

trajectories ← collect_trajectories(env, EpsilonGreedyPolicy(𝜃))
𝑋 ← get_X(trajectories)
𝑦 ← get_y(trajectories, 𝑞)
𝑞 ← fit(𝑋, 𝑦)

end for
return 𝑞

end function

6.3 Fitted policy iteration

We can use fitted policy evaluation to extend policy iteration (sec. 2.4.4.2) to this new, more
general setting. The algorithm remains exactly the same – repeatedly make the policy greedy
with respect to its own value function – except now we evaluate the policy 𝜋 (i.e. estimate 𝑄𝜋)
using fitted policy evaluation.

Exercise 6.2 (Classification of fitted policy iteration). Is fitted policy iteration online or
offline? On-policy or off-policy?
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function fitted-policy-iteration(trajectories ∶ listTrajectory, fit ∶ FittingMethod, epochs ∶ ℤ, evaluation_epochs ∶ ℤ, 𝜋init ∶ OptionalPolicy)
”Run fitted policy iteration using the given dataset.”
𝜋 ← 𝜋init
for _ ∈ range(epochs) do

𝑄 ← fitted_evaluation(trajectories, fit, 𝜋, evaluation_epochs)
𝜋 ← q_to_greedy(𝑄)

end for
return 𝜋

end function

Figure 6.7: Pseudocode for fitted policy iteration.

6.4 Key takeaways

In a finite MDP where the environment is known, we can apply dynamic programming
(sec. 2.3.2) to compute the optimal policy. But in most real-world settings, we don’t know
the state transitions 𝑃 . This means we can’t exactly compute the Bellman consistency or
optimality equations (Theorem 2.3), which require taking an expectation over the next state.

In an unknown environment, we must learn from data collected from the environment. Model-
based methods learn a model of the environment, and then plan within that model to choose
the best action. Model-free methods instead use the data to approximate quantities of
interest (e.g. the optimal Q function or optimal policy) directly.

We began by considering offline algorithms that used a dataset of interactions to learn some
quantity of interest. We then saw the online equivalents that observe data by interacting with
the environment.

6.5 Bibliographic notes and further reading

The fitted dynamic programming algorithms we discuss in this chapter are a special case of
temporal difference (TD) methods, an important class of reinforcement learning algorithms.
In particular, this chapter only discusses one-step methods, which can be directly generalized
to 𝑛-step methods and the 𝜆-return, the formulation most commonly used in practice. This
allows us to draw direct parallels to the tabular DP methods of Chapter 2 (see tbl. 6.1). TD
learning is perhaps the “central and novel [idea of] reinforcement learning” (Sutton & Barto,
2018, ch. 6).

TD methods are based in the psychology of animal learning

Witten (1977), which proposed the tabular TD(0) method, appears to be the earliest instance
of a temporal difference algorithm.
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Richard Sutton’s PhD thesis (Sutton, 1988) proved theoretical guarantees for many of the
algorithms presented here. Sutton & Barto (2018) gives a comprehensive discussion of the
methods discussed here.

In later work, Hausknecht & Stone (2017) made the Q-function recurrent, so that it depends on
the past history of states. The resulting policy is non-Markovian, which additionally accounts
for the partial observability of the environment.

Maei et al. (2009) further discusses the deadly triad of off-policy sampling, function approx-
imation, and value bootstrapping.

Deep RL rose to prominence when Mnih et al. (2013) used a deep Q network to achieve state
of the art performance on the Atari games. However, the combination of deep learning and
the underlying variance in RL problems made it challenging to optimize these neural networks.
Many changes have been proposed. Wang et al. (2016) suggests learning the value function
and advantage function separately in a “dueling” architecture. Hasselt (2010) suggested the
“double learning” algorithm to compensate for Q-learning’s tendency to overestimate the true
values. Hasselt et al. (2016) applied double learning to deep neural networks. Hessel et al.
(2018) combined

Bertsekas & Tsitsiklis (1996) coined the term “neuro-dynamic programming” to refere to the
combination of (artificial) neural networks with dynamic programming techniques.
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7 Policy Gradient Methods

7.1 Introduction

The core task of RL is finding the optimal policy in a given environment. This is essentially
an optimization problem (i.e. computing a minimum or maximum): out of some class of policies
Π, we want to find the one that achieves the maximum expected total reward:

̂𝜋 = arg max
𝜋∈Π 𝔼

𝜏∼𝜌𝜋
[𝑅(𝜏)] where 𝑅(𝜏) ∶=

𝐻−1
∑
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ). (7.1)

In a known environment with a finite set of states and actions, we can compute the optimal
policy using dynamic programming in 𝑂(𝐻 ⋅ |𝒮|2 ⋅ |𝒜|) steps (sec. 2.3.2). In more general
settings, though, such as when the environment is unknown, it is typically intractable to
compute the optimal policy exactly. Instead, we start from some random policy, and then
iteratively improve it by interacting with the environment. Policy iteration (sec. 2.4.4.2) and
iterative LQR (sec. 3.6.4) are two algorithms we’ve seen that do this.

In this chapter, we will explore policy gradient algorithms, which also iteratively improve a
policy. The gradient of a function at a specific input point is the direction that increases
the output value most rapidly. If we think of the expected total reward as a function of the
policy, we can repeatedly shift the policy by the gradient of that function to obtain policies
that achieve higher expected total rewards.

Policy gradient methods are responsible for groundbreaking applications including AlphaGo,
OpenAI Five, and large language models. This chapter will explore:

1. Examples of parameterized policies that can be expressed in terms of a finite set of
parameters.

2. Gradient descent, a general optimization algorithm for differentiable functions.
3. Different estimators of the policy gradient, enabling us to apply (stochastic) gradient

descent to RL.
4. Proximal (policy) optimization techniques that ensure the steps taken are “not too large”.

These are some of the most popular and widely used RL algorithms at the time of writing.

109



Remark 7.1 (Conventions). Policy gradient algorithms typically optimize over stochastic poli-
cies (def. 2.6). In this chapter, we will only discuss the case of stochastic policies, though there
exist policy gradient algorithms for deterministic policies as well (Silver et al., 2014).

To ease notation, we will treat the horizon 𝐻 as finite and avoid adding a discount factor 𝛾.
We make the policy’s dependence on the timestep ℎ implicit by assuming that the state space
conveys information about the timestep. We also use

𝑅(𝜏) ∶=
𝐻−1
∑
ℎ=0

𝑟ℎ (7.2)

to denote the total reward in a trajectory.

7.2 Parameterized policies

Optimizing over the entire space of policies is usually intractable: there’s just too many! There
are there are |𝒜||𝒮| deterministic mappings from state to actions. In continuous state spaces,
|𝒮| is infinite, so the space of policies becomes infinite-dimensional. Infinite-dimensional spaces
are usually hard to optimize over. Instead, we choose a parameterized policy class with a finite
number 𝐷 of adjustable parameters. Each parameter vector corresponds to a mapping from
states to actions. (We also discussed the notion of a parameterized function class in sec. 5.3.2).
The following examples seek to make this more concrete.

Example 7.1 (Tabular representation). If both the state and action spaces are finite, perhaps
we could simply learn a preference value 𝜃𝑠,𝑎 for each state-action pair, resulting in a table
of |𝒮||𝒜| values. These are the 𝐷 parameters of the policy. Then, for each state, to compute
the distribution over actions, we perform a softmax operation: we exponentiate each of the
values, and then normalize to form a valid distribution.

𝜋softmax
𝜃 (𝑎 ∣ 𝑠) = exp(𝜃𝑠,𝑎)

∑𝑠,𝑎′ exp(𝜃𝑠,𝑎′) . (7.3)

In this way, we turn a vector of length |𝒮||𝒜| into a mapping from 𝒮 → △(𝒜). However, this
doesn’t make use of any structure in the states or actions, so while this is flexible, it is also
prone to overfitting. For small state and action spaces, it makes more sense to use a dynamic
programming algorithm from Chapter 2.

For a given parameterization, such as the one above, we call the set of resulting policies the
parameterized policy class, that is,
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{𝜋𝜃 ∣ 𝜃 ∈ ℝ𝐷}, (7.4)

where 𝐷 is the fixed number of parameters. Let us explore some more examples of parameter-
ized policy classes.

Example 7.2 (Linear in features). Another approach is to map each state-action pair into
some feature space 𝜙(𝑠, 𝑎) ∈ ℝ𝐷. Then, to map a feature vector to a probability, we take a
linear combination of the features and take a softmax. The parameters 𝜃 are the coefficients
of the linear combination:

𝜋linear
𝜃 (𝑎 ∣ 𝑠) = exp(𝜃⊤𝜙(𝑠, 𝑎))

∑𝑎′ exp(𝜃⊤𝜙(𝑠, 𝑎′)) . (7.5)

Another interpretation is that 𝜃 represents the feature vector of the “desired” state-action pair,
as state-action pairs whose features align closely with 𝜃 are given higher probability.

Example 7.3 (Neural policies). More generally, we could map states and actions to unnor-
malized scores via some parameterized function 𝑓𝜃 ∶ 𝒮×𝒜 → ℝ, such as a neural network, and
choose actions according to a softmax:

𝜋neural
𝜃 (𝑎 ∣ 𝑠) = exp(𝑓𝜃(𝑠, 𝑎))

∑𝑎′ exp(𝑓𝜃(𝑠, 𝑎′)) . (7.6)

Remark 7.2 (Why softmax). The three parameterized policy classes above all use the softmax
operation. Of course, this isn’t the only way to turn a list of values into a probability distri-
bution: for example, you could also subtract by the minimum value and divide by the range.
Why is softmax preferred in practice? One reason is that it is a smooth, differentiable function
of the input values. It is also nice to work with analytically, and has other interpretations
from physics, where it is known as the Gibbs or Boltzmann distribution, and economics, where
it is known as the Bradley-Terry model for ranking choices.

Example 7.4 (Diagonal Gaussian policies for continuous action spaces). Consider an 𝑁 -
dimensional action space 𝒜 = ℝ𝑁 . Then for a stochastic policy, we could predict the mean
action and then add some random noise to it. For example, we could use a linear model to
predict the mean action and then add some noise 𝜖 ∼ 𝒩(0, 𝜎2𝐼) to it.

𝜋𝜃(⋅ ∣ 𝑠) = 𝒩(𝜃⊤𝜙(𝑠), 𝜎2𝐼).
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Now we’ve seen some examples of parameterized policies. Optimizing over a parameterized
policy class makes the policy optimization problem finite-dimensional:

̂𝜃 = arg max
𝜃∈ℝ𝐷

𝐽(𝜃)

where 𝐽(𝜃) ∶= 𝔼
𝜏∼𝜌𝜋𝜃

𝐻−1
∑
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ).
(7.7)

This enables us to apply one of the most popular and general optimization algorithms: gradient
descent.

7.3 Gradient descent

Gradient descent is an optimization algorithm that can be applied to any differentiable
function. That is, it is a tool for solving

arg min
𝜃∈ℝ𝐷

𝐽(𝜃), (7.8)

where 𝐽(𝜃) ∈ ℝ is the function to be minimized. For two-dimensional inputs, a suitable analogy
for this algorithm is making your way down a hill (with no cliffs), where you keep taking steps
in the steepest direction downwards from your current position. Your horizontal position (𝑥, 𝑧)
is the input and your vertical position 𝑦 is the function to be minimized. The slope of the
mountain at your current position can be expressed using the gradient, written ∇𝑦(𝑥, 𝑧) ∈ ℝ2.
This can be computed as the vector of partial derivatives,

∇𝑦(𝑥, 𝑧) = (
𝜕𝑦
𝜕𝑥𝜕𝑦
𝜕𝑧

) . (7.9)

To calculate the slope (aka “directional derivative”) of the mountain in a given direction
(Δ𝑥, Δ𝑧), you take the dot product of the difference vector with the gradient:

Δ𝑦 = (Δ𝑥
Δ𝑧) ⋅ ∇𝑦(𝑥, 𝑧), (7.10)

where 𝑥, 𝑧 is your current position. What direction should we walk to go down the hill as
quickly as possible? That is, we want to find the direction (Δ𝑥, Δ𝑧) that minimizes the
slope:

arg min
Δ𝑥,Δ𝑧

Δ𝑦. (7.11)
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Figure 7.1: Example of gradient descent on the Rosenbrock function.

We use the useful fact that, for a given vector 𝑣, the direction 𝑢 that minimizes the dot
product 𝑢 ⋅ 𝑣 points in the opposite direction to 𝑣. This should make intuitive sense, since
𝑢 ⋅ 𝑣 = ‖𝑢‖‖𝑣‖ cos 𝜃, where 𝜃 is the angle between 𝑢 and 𝑣, and the cosine function is minimized
at 𝜃 = 𝜋. Applying this to eq. 7.10, we see that the direction of steepest decrease is opposite to
the gradient. “Walking” in that direction corresponds to subtracting a multiple of the gradient
from your current position:

(𝑥𝑡+1

𝑧𝑡+1) = (𝑥𝑡

𝑧𝑡) − 𝜂∇𝑦(𝑥𝑡, 𝑧𝑡)

where 𝑡 denotes the iteration of the algorithm and 𝜂 > 0 is a “step size” hyperparameter
that controls the size of the steps we take. (Note that we could also vary the step size across
iterations, that is, 𝜂0, … , 𝜂𝑇 .)

Remark 7.3 (Minimization vs maximization). Optimization problems are usually posed as
minimization problems by convention. To solve a maximization problem with gradient descent,
you could simply take steps in the direction of the positive gradient. This also corresponds to
flipping the sign of the objective function.

The case of a two-dimensional input is easy to visualize. The analogy to climbing a hill (if
we were maximizing the function) is why gradient descent is sometimes called hill climbing
and the graph of the objective function is called the loss landscape. (The term “loss” comes
from supervised learning, which you can read about in Chapter 5.) But this idea can be
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straightforwardly extended to higher-dimensional inputs. From now on, we’ll use 𝐽 to denote
the function we’re trying to maximize, and 𝜃 to denote the parameters being optimized over.
(In the above example, 𝜃 = (𝑥 𝑧)⊤). Let’s summarize the algorithm in general:

Definition 7.1 (Gradient descent). Suppose we are trying to solve the optimization problem

𝜃⋆ = arg min
𝜃∈ℝ𝐷

𝐽(𝜃), (7.12)

where 𝐽(𝜃) ∈ ℝ is the differentiable function to be minimized. Gradient descent starts with
an initial guess 𝜃0 and then takes steps in the direction of −∇𝐽(𝜃𝑡), where 𝜃𝑡 is the current
iterate:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐽(𝜃𝑡). (7.13)

Note that we scale ∇𝐽(𝜃𝑡) by the step size 𝜂 > 0, also known as the learning rate.

function gradient_descent(𝜃init ∶ ℝ𝐷, 𝐽 ∶ (ℝ𝐷) → ℝ, 𝜂 ∶ ℝ, 𝑛steps ∶ ℕ)
𝜃 ← 𝜃init
history ← [𝜃]
for step ∈ range(𝑛steps) do

𝜃 ← 𝜃 + 𝜂 ⋅ ∇(𝐽) (𝜃)
history.append(𝜃)

end for
return (𝜃, jnp.array(history))

end function

Figure 7.2: Pseudocode for gradient descent.

Notice that the parameters will stop changing once ∇𝐽(𝜃) = 0. Once we reach this stationary
point, our current parameters are ‘locally optimal’ (assuming we’re at a local minimum): it’s
impossible to increase the function by moving in any direction. If 𝐽 is convex (i.e. the function
looks like an upward-curved bowl), then the only point where this happens is at the global
optimum. Otherwise, if 𝐽 is nonconvex, the best we can hope for is a local optimum. We won’t
go deeper into the theory of convex functions here. For more details, refer to the textbook of
Boyd & Vandenberghe (2004).

Remark 7.4 (Limitations of gradient descent). Gradient descent and its variants are responsible
for most of the major achievements in modern machine learning. It is important to note,
however, that for many problems, gradient descent is not a good optimization algorithm to
reach for! If you have more information about the problem, such as access to second derivatives,
you can apply more powerful optimization algorithms that converge much more rapidly. Read
Nocedal & Wright (2006) if you’re curious about the field of numerical optimization.
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7.3.1 Computing derivatives

How does a computer compute the gradient of a function?

One way is symbolic differentiation, which is similar to the way you might compute it
by hand: the computer applies a list of rules to transform the symbols involved. Python’s
sympy package (Meurer et al., 2017) supports symbolic differentiation. However, functions
implemented as algorithms in code may not always have a straightforward symbolic represen-
tation.

Another way is numerical differentiation, which is based on the limit definition of a (direc-
tional) derivative:

∇𝑢𝐽(𝑥) = lim
𝜀→0

𝐽(𝑥 + 𝜀𝑢) − 𝐽(𝑥)
𝜀 (7.14)

Then, we can substitute a small value of 𝜀 on the r.h.s. to approximate the directional deriva-
tive. How small, though? Depending on how smooth the function is and how accurate our
estimate needs to be, we may need such a small value of 𝜀 that typical computers will run into
rounding errors. Also, to compute the full gradient, we would need to compute the r.h.s. once
for each input dimension. This is an issue if computing 𝐽 is expensive.

Automatic differentiation achieves the best of both worlds. Like symbolic differentiation,
we manually implement the derivative rules for a few basic operations. However, instead
of executing these on the symbols, we execute them on the values when the function gets
called, like in numerical differentiation. This allows us to differentiate through programming
constructs such as branches or loops, and doesn’t involve any arbitrarily small values. Baydin
et al. (2018) provides an accessible survey of automatic differentiation. At the time of writing,
all of the popular Python libraries for machine learning, such as PyTorch (Ansel et al., 2024)
and Jax (Bradbury et al., 2018), use automatic differentiation.

7.3.2 Stochastic gradient descent

In real applications, computing the gradient of the target function is not so simple. As an
example from supervised learning, 𝐽(𝜃) might be the sum of squared prediction errors across
an entire training dataset. If our dataset is very large, it might not fit into our computer’s
memory, making it impossible to evaluate ∇𝐽(𝜃) at once. We will see that computing the
exact gradient in RL faces a similar challenge where computing the gradient would require
computing a complicated integral.

In these cases, we can compute some gradient estimate

𝑔𝑥(𝜃) ≈ ∇𝐽(𝜃) (7.15)
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of the gradient at each step, using some observed data 𝑥, and walk in that direction instead.
This is called stochastic gradient descent. In the SL example above, we might randomly
choose a minibatch of samples and use them to estimate the true prediction error.

function sgd(rng ∶ jr.PRNGKey, 𝜃init ∶ ℝ𝐷, 𝑔 ∶ (jr.PRNGKey × ℝ𝐷) → ℝ𝐷, 𝜂 ∶ ℝ, 𝑛steps ∶ ℤ)
𝜃 ← 𝜃init
rngs ← jr.split(rng, 𝑛steps)
history ← [𝜃]
for step ∈ range(𝑛steps) do

𝜃 ← 𝜃 + 𝜂 ⋅ 𝑔(rngsstep, 𝜃)
history.append(𝜃)

end for
return (𝜃, jnp.array(history))

end function

Figure 7.3: Pseudocode for stochastic gradient descent.

What makes one gradient estimator better than another? Ideally, we want this estimator to
be unbiased; that is, on average, it matches a single true gradient step.

Definition 7.2 (Unbiased gradient estimator). We call the gradient estimator 𝑔 unbiased if,
for all 𝜃 ∈ ℝ𝐷,

𝔼
𝑥∼𝑝𝜃

[𝑔𝑥(𝜃)] = ∇𝐽(𝜃), (7.16)

where 𝑝𝜃 denotes the distribution of the observed data 𝑥.

We also want the variance of the estimator to be low so that its performance doesn’t change
drastically at each step.

We can actually show that, for many “nice” functions, in a finite number of steps, SGD will
find a 𝜃 that is “close” to a stationary point. In another perspective, for such functions, the
local “landscape” of 𝐽 around 𝜃 becomes flatter and flatter the longer we run SGD.

Theorem 7.1 (SGD convergence). More formally, suppose we run SGD for 𝐾 steps, using an
unbiased gradient estimator. Let the step size 𝜂𝑘 scale as 𝑂(1/

√
𝑘). Then if 𝐽 is bounded and

𝛽-smooth (see below), and the norm of the gradient estimator has a bounded second moment
𝜎2,

‖∇𝐽(𝜃𝑖)‖2 ≤ 𝑂 (𝑀𝛽𝜎2/𝐾) .

We call a function 𝛽-smooth if its gradient is Lipschitz continuous with constant 𝛽:
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(a) Full-batch GA. (b) SGD with a batch size of 1.

(c) SGD with a batch size of 5. (d) SGD with a batch size of 10.

Figure 7.4: GA and SGD on a two-dimensional convex optimization task. Note that a larger
batch size reduces the variance in the step direction.
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‖∇𝐽(𝜃) − ∇𝐽(𝜃′)‖ ≤ 𝛽‖𝜃 − 𝜃′‖.

We’ll now see a concrete application of stochastic gradient descent in the context of policy
optimization.

7.4 Policy (stochastic) gradient descent

Policy gradient methods boil down to applying gradient descent to the policy optimization
problem for a chosen parameterized policy class (eq. 7.4):

𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇𝐽(𝜃𝑡) where 𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[
𝐻−1
∑
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)] . (7.17)

The challenges lie mostly in computing unbiased gradient estimators (def. 7.2) and in con-
straining the size of each update to improve stability of the learning algorithm.

To provide some intuition for the gradient estimators we will later derive, the following section
constructs a general policy gradient algorithm in a “bottom-up” way. The remainder of the
chapter focuses on methods for improving the stability of the policy gradient algorithm.

Remark 7.5 (On-policy). Note that since the gradient estimator is computed using data col-
lected by the current policy, policy gradient algorithms are generally on-policy (def. 6.3). Note
that on-policy algorithms generally suffer from worse sample efficiency than off-policy algo-
rithms: while off-policy algorithms (such as Q-learning (sec. 6.2.2)) can use data collected by
any method, on-policy algorithms can only make use of data from the current policy.

7.4.1 Introduction to policy gradient methods

In this section, we’ll intuitively construct an iterative algorithm for improving the parameters.
We’ll build up to true policy gradient estimators by considering a series of update rules.

Remember that in RL, the primary goal is to find the optimal policy that achieves the highest
total reward. Put simply, we want policies that take better actions more often. Breaking that
down, we need

1. a way to shift the policy to make certain actions more likely, and
2. a way to measure how good an action is in a given state.
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Let’s tackle the first task: getting the policy to take action 𝑎 in state 𝑠. Back in the tabular
setting, for a deterministic policy 𝜋, we simply assigned 𝜋(𝑠) ← 𝑎. Now that we’re using a
parameterized policy class, we can’t directly assign a value to 𝜋(𝑠). Instead, we adjust the
parameters 𝜃 of the policy to maximize the probability of taking 𝑎:

̂𝜃 = arg max
𝜃

𝜋𝜃(𝑎 ∣ 𝑠). (7.18)

Assuming the output of the policy is differentiable with respect to its parameters, we can apply
gradient descent:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑔𝑠,𝑎(𝜃𝑡)
where 𝑔𝑠,𝑎(𝜃) ∶= ∇𝜋𝜃(𝑎 ∣ 𝑠). (7.19)

The notation 𝑔 is chosen to remind you of a gradient estimator (eq. 7.15). We will draw the
relationship between our intuitive approach and SGD more concretely later on.

Now let’s approach the second task: how do we choose which actions to take more often?
Suppose we have some random variable 𝜓 (that’s the Greek letter “psi”) that is correlated
with how “good” action 𝑎 is in state 𝑠. Later in the chapter, we’ll explore concrete choices for
𝜓, but for now, we’ll leave its identity a mystery. Then, to update the policy, we could sample
an action 𝑎 ∼ 𝜋𝜃𝑖(⋅ ∣ 𝑠), and weight the corresponding gradient by 𝜓. We will therefore call 𝜓
the gradient coefficient.

𝑔𝑠,𝑎(𝜃) ∶= 𝜓∇𝜋𝜃(𝑎 ∣ 𝑠). (7.20)

To illustrate this, suppose the policy takes one action 𝑎0 and obtains a coefficient of 𝜓0 = 2
and then takes a second action 𝑎1 with a coefficient of 𝜓1 = −1. Then we would update
𝜃 ← 𝜃 + 2𝜂∇𝜋𝜃(𝑎0 ∣ 𝑠) and then 𝜃 ← 𝜃 − 𝜂∇𝜋𝜃(𝑎1 ∣ 𝑠).

Exercise 7.1 (An alternative approach). Compare this with the policy iteration up-
date (sec. 2.4.4.2), where we updated the deterministic policy according to 𝜋(𝑠) =
arg max𝑎∈𝒜 𝑄𝜋(𝑠, 𝑎). In our current setting, why not just solve for 𝜃𝑡+1 = arg max𝜃 𝜋𝜃(𝑎⋆ ∣ 𝑠),
where 𝑎⋆ = arg max𝑎∈𝒜 𝑄𝜋𝜃𝑖 (𝑎 ∣ 𝑠), instead of sampling an action from our policy? What type
of action space does this approach assume? What does the added stochasticity grant you?

But the gradient estimator eq. 7.20 has an issue: the amount that we encourage action 𝑎
depends on how often the policy takes it. This could lead to a positive feedback loop where
the most common action becomes more and more likely, regardless of its quality. To cancel
out this factor, we divide by the action’s likelihood:
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𝑔𝑠,𝑎(𝜃) ∶= 𝜓∇𝜋𝜃(𝑎 ∣ 𝑠)
𝜋𝜃(𝑎 ∣ 𝑠)

= 𝜓∇ log 𝜋𝜃(𝑎 ∣ 𝑠).
(7.21)

Now we can extend this across the entire time horizon. Suppose we use 𝜋𝜃𝑖 to roll out a
trajectory 𝜏 = (𝑠0, 𝑎0, … , 𝑠𝐻−1, 𝑎𝐻−1) and compute eq. 7.21 at each step of the trajectory. We
compute a gradient coefficient at each timestep, so we denote each instance by 𝜓ℎ(𝜏).

𝑔𝜏(𝜃) ∶=
𝐻−1
∑
ℎ=0

𝜓ℎ(𝜏)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ). (7.22)

To reduce the variance, we could roll out multiple trajectories, and average the gradient steps
across them. This gives us the general form of the policy gradient algorithm:

Definition 7.3 (General policy gradient algorithm). Suppose we are given an expression for
the gradient coefficients 𝜓ℎ(𝜏). Then we can perform policy gradient optimization as follows.

At each iteration 𝑡 = 0, … , 𝑇 − 1 of the algorithm, we sample 𝑁 trajectories 𝜏𝑛 =
(𝑠𝑛

0 , 𝑎𝑛
0 , 𝑟𝑛

0 , … , 𝑠𝑛
𝐻−1, 𝑎𝑛

𝐻−1, 𝑟𝑛
𝐻−1), and compute the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝜂 1
𝑁

𝑁
∑
𝑛=1

𝑔𝜏𝑛(𝜃𝑡)

where 𝑔𝜏(𝜃) =
𝐻−1
∑
ℎ=0

𝜓ℎ(𝜏)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ).
(7.23)

This algorithm allows us to optimize a policy by sampling trajectories from it and computing
the gradient-log-likelihoods (sometimes called the scores) of the chosen actions. Then we can
update the parameters 𝜃 in the direction given by eq. 7.23 to obtain a new policy that chooses
better actions more often.

Remark 7.6 (Summary of intuitive derivation). Let us review how we arrived at this expression:

1. We take the gradient of the policy to encourage certain actions (eq. 7.19).
2. We encourage actions proportionally to their advantage (eq. 7.20).
3. We correct for the policy’s sampling distribution (eq. 7.21).
4. We extend this to each step of the trajectory (eq. 7.22).
5. We sample multiple trajectories to reduce variance (eq. 7.23).

The last piece is to figure out what 𝜓 stands for.
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function policy_gradient(env ∶ gym.Env, 𝜋, 𝜃 ∶ ℝ𝐷, get_psi ∶ (list”Transition”) → ℝ𝐻)
”Estimate the policy gradient using REINFORCE.”
𝑔 ← jnp.zeros_like(𝜃)
𝜏 ← sample_trajectory(env, 𝜋(𝜃))
psis ← get_psi(𝜋(𝜃) , 𝜏)
for ((𝑠, 𝑎, 𝑟) , 𝜓) ∈ zip(𝜏, psis) do

function policy_log_likelihood(𝜃 ∶ ℝ𝐷)
return log 𝜋(𝜃) (𝑠, 𝑎)

end function
𝑔 ← 𝑔 + 𝜓 ⋅ ∇(policy_log_likelihood) (𝜃)

end for
return 𝑔

end function

Figure 7.5: Pseudocode for the general policy gradient algorithm.

Exercise 7.2 (Brainstorming). Can you think of any possibilities? 𝜓ℎ(𝜏) should correlate
with the quality of the action taken at time ℎ. It may depend on the current policy 𝜋𝜃𝑖 or any
component of the trajectory (𝑠0, 𝑎0, 𝑟0, … , 𝑠𝐻−1, 𝑎𝐻−1, 𝑟𝐻−1).

We won’t keep you waiting: it turns out that if we set 𝜓ℎ(𝜏) to

1. 𝑅(𝜏) (the total reward of the trajectory) (eq. 7.25),
2. ∑𝐻−1

ℎ′=ℎ 𝑟(𝑠ℎ′ , 𝑎ℎ′) (the remaining reward in the trajectory),
3. 𝑄𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ) (the current policy’s Q-function), or
4. 𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ) (the current policy’s advantage function),

among other possibilities, the gradient term of eq. 7.23 is actually an unbiased estimator
(def. 7.2) of the true “policy gradient” ∇𝐽(𝜃) (see eq. 7.7). That is, for any of the 𝜓 above, up-
dating the parameters according to the general policy gradient algorithm eq. 7.23 is (minibatch)
stochastic gradient descent on the expected total reward 𝐽(𝜃), with the gradient estimator

𝑔𝜏(𝜃) =
𝐻−1
∑
ℎ=0

𝜓ℎ(𝜏)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ)

where 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔𝜏(𝜃)] = ∇𝐽(𝜃).
(7.24)

7.4.2 The REINFORCE policy gradient

We begin by showing that setting 𝜓ℎ = ∑𝐻−1
ℎ′=0 𝑟ℎ′ , i.e. the total reward of the trajectory,

provides an unbiased gradient estimator.
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Theorem 7.2 (Using the total reward is unbiased). Substituting

𝜓ℎ(𝜏) ∶= 𝑅(𝜏) ∶=
𝐻−1
∑
ℎ′=0

𝑟ℎ′ (7.25)

into the general policy gradient estimator eq. 7.23 gives an unbiased estimator. That is,

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔R
𝜏 (𝜃)]

where 𝑔R
𝜏 (𝜃) ∶=

𝐻−1
∑
ℎ=0

𝑅(𝜏)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ).
(7.26)

The “R” stands for REINFORCE, which stands for “REward Increment = Nonnegative Factor
× Offset Reinforcement × Characteristic Eligibility” (Williams, 1992, p. 234). (We will not
elaborate further on this etymology.)

Proof via calculus. As our first step towards constructing an unbiased policy gradient estima-
tor, let us simplify the expression

∇𝐽(𝜃) = ∇ 𝔼
𝜏∼𝜌𝜋𝜃

[𝑅(𝜏)]. (7.27)

In supervised learning, we were able to swap the gradient and expectation. That was because
the function being averaged depended on the parameters, not the distribution itself:

∇ 𝔼
(𝑥,𝑦)∼𝑝

[𝐿(𝑓𝜃(𝑥), 𝑦)] = 𝔼
(𝑥,𝑦)∼𝑝

[∇𝐿(𝑓𝜃(𝑥), 𝑦)]. (7.28)

Here, though, the distribution depends on the parameters, and the function being averaged
does not. One way to compute this type of derivative is to use the identity

∇𝜌𝜋𝜃(𝜏) = 𝜌𝜋𝜃(𝜏)∇ log 𝜌𝜋𝜃(𝜏). (7.29)

By expanding the definition of expected value, we can compute the correct value to be
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∇𝐽(𝜃) = ∇ 𝔼
𝜏∼𝜌𝜋𝜃

[𝑅(𝜏)]

= ∫ ∇𝜌𝜋𝜃(𝜏)𝑅(𝜏)

= ∫ 𝜌𝜋𝜃(𝜏)∇ log 𝜌𝜋𝜃(𝜏)𝑅(𝜏)

= 𝔼
𝜏∼𝜌𝜋𝜃

[∇ log 𝜌𝜋𝜃(𝜏)𝑅(𝜏)].

(7.30)

Now we deal with the ∇ log 𝜌𝜋𝜃(𝜏) term, that is, the gradient-log-likelihood (aka score) of the
trajectory. Recall Theorem 2.1, in which we showed that when the state transitions are Markov
(i.e. 𝑠ℎ only depends on 𝑠ℎ−1, 𝑎ℎ−1) and the policy is history-independent (i.e. 𝑎ℎ ∼ 𝜋𝜃(⋅ ∣ 𝑠ℎ)),
we can autoregressively write out the likelihood of a trajectory under the policy 𝜋𝜃. Taking
the log of the trajectory likelihood turns the products into sums:

log 𝜌𝜋𝜃(𝜏) = log 𝑃0(𝑠0) +
𝐻−1
∑
ℎ=0

( log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ) + log 𝑃(𝑠ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ)) (7.31)

When we take the gradient with respect to the parameters 𝜃, only the log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ) terms
depend on 𝜃:

∇ log 𝜌𝜋𝜃(𝜏) =
𝐻−1
∑
ℎ=0

∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ). (7.32)

Substituting this into eq. 7.30 gives

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[
𝐻−1
∑
ℎ=0

𝑅(𝜏)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ)]

= 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔R
𝜃 (𝜏)],

showing that the REINFORCE policy gradient (eq. 7.25) is unbiased.

Proof via importance sampling. Another way of deriving Theorem 7.2 involves a technique
known as importance sampling. We’ll demonstrate this approach here since it will come in
handy later on. Importance sampling is useful when we want to estimate an expectation over a
distribution that is hard to sample from. Instead, we can sample from a different distribution
that supports the same values, and then reweight the samples according to the likelihood ratio
between the two distributions.
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Theorem 7.3 (Importance sampling). Consider some random variable 𝑥 ∈ 𝒳 with density
function 𝑝. Let 𝑞 be the density function of another distribution on 𝒳 that supports all of 𝑝,
that is, 𝑞(𝑥) = 0 only if 𝑝(𝑥) = 0. Then

𝔼
𝑥∼𝑝

[𝑓(𝑥)] = 𝔼
𝑥∼𝑞

[𝑝(𝑥)
𝑞(𝑥)𝑓(𝑥)] . (7.33)

Proof. We expand the definition of expected value:

𝔼
𝑥∼𝑝

[𝑓(𝑥)] = ∑
𝑥∈𝒳

𝑓(𝑥)𝑝(𝑥)

= ∑
𝑥∈𝒳

𝑓(𝑥)𝑝(𝑥)
𝑞(𝑥)𝑞(𝑥)

= 𝔼
𝑥∼𝑞

[𝑝(𝑥)
𝑞(𝑥)𝑓(𝑥)] .

(7.34)

Exercise 7.3 (Importance sampling for a biased coin). Suppose you are a student and you
determine your study routine by flipping a biased coin. Let 𝑥 ∈ {heads, tails} be the result of
the coin flip. The coin shows heads twice as often as it shows tails:

𝑝(𝑥) = {2/3 𝑥 = heads
1/3 𝑥 = tails. (7.35)

Suppose you study for 𝑓(𝑥) hours, where

𝑓(𝑥) = {1 𝑥 = heads
2 𝑥 = tails. (7.36)

One day, you lose your coin, and have to replace it with a fair one, i.e.

𝑞(𝑥) = 1/2, (7.37)

but you want to study for the same amount on average. Suppose you decide to do this by
importance sampling with the new coin. Now, upon flipping heads or tails, you study for
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𝑝(heads)
𝑞(heads)𝑓(heads) = 4

3
𝑝(tails)
𝑞(tails)𝑓(tails) = 2

3

(7.38)

hours respectively. Verify that your expected time spent studying is the same as before. Now
compute the variance in the time you spend studying. Does it change?

Returning to the RL setting, we can compute the policy gradient by importance sampling
from any trajectory distribution 𝜌. (All gradients are being taken with respect to 𝜃.)

∇𝐽(𝜃) = ∇ 𝔼
𝜏∼𝜌𝜋𝜃

[𝑅(𝜏)]

= ∇ 𝔼
𝜏∼𝜌

[𝜌𝜋𝜃(𝜏)
𝜌(𝜏) 𝑅(𝜏)]

= 𝔼
𝜏∼𝜌

[∇𝜌𝜋𝜃(𝜏)
𝜌(𝜏) 𝑅(𝜏)] .

Setting 𝜌 = 𝜌𝜋𝜃 reveals eq. 7.30, and we can then proceed as we did in the previous proof.

Let us reiterate some intuition into how this method works. Recall that we update our param-
eters according to

𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇𝐽(𝜃𝑡)
= 𝜃𝑡 + 𝜂 𝔼

𝜏∼𝜌𝜃𝑡
[∇ log 𝜌𝜃𝑡(𝜏)𝑅(𝜏)]. (7.39)

Consider the “good” trajectories where 𝑅(𝜏) is large. Then 𝜃 gets updated so that these
trajectories become more likely. To see why, recall that log 𝜌𝜃(𝜏) is the log-likelihood of the
trajectory 𝜏 under the policy 𝜋𝜃, so the gradient points in the direction that makes 𝜏 more
likely.

However, the REINFORCE gradient estimator 𝑔R
𝜏 (𝜃) has large variance. Intuitively, this is

because it uses the total reward from the entire trajectory, which depends on the entire sequence
of interactions with the environment, each step of which introducesrandomness. The rest of
this chapter investigates ways to find lower-variance policy gradient estimators.
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7.4.3 Baselines and advantages

A central idea from statistical learning is the bias-variance decomposition, which shows
that the mean squared error of an estimator is the sum of its squared bias and its variance.
All of the policy gradient estimators we will see in this chapter are already unbiased, i.e., their
mean over trajectories equals the true policy gradient (def. 7.2). Can we construct estimators
with lower variance as well?

As a first step, note that the action taken at step ℎ does not causally affect the reward from
previous timesteps, since they’re already in the past. So we should only use the reward from
the current timestep onwards to estimate the policy gradient.

Theorem 7.4 (Using the remaining reward is unbiased). Substituting the reamining reward
∑𝐻−1

ℎ′=ℎ 𝑟ℎ′ for 𝜓ℎ(𝜏) into the general policy gradient estimator eq. 7.23 gives an unbiased
estimator. That is,

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔rem
𝜏 (𝜃)]

where 𝑔rem
𝜏 (𝜃) ∶=

𝐻−1
∑
ℎ=0

(
𝐻−1
∑
ℎ′=ℎ

𝑟ℎ′) ∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ).
(7.40)

Exercise 7.4 (Unbiasedness of remaining reward estimator). We leave the proof of Theo-
rem 7.4 as an exercise.

By a conditioning argument, we can replace the remaining reward with the policy’s Q-function,
evaluated at the current state. By the same reasoning as above, this also reduces the variance,
since the only stochasticity in the expression 𝑄𝜋𝜃(𝑠ℎ, 𝑎ℎ) comes from the current state and
action.

Theorem 7.5 (Using the Q function is unbiased). Substituting 𝑄𝜋𝜃(𝑠ℎ, 𝑎ℎ) for 𝜓ℎ(𝜏) into the
general policy gradient estimator eq. 7.23 gives an unbiased estimator. That is,

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔Q
𝜏 (𝜃)]

where 𝑔Q
𝜏 (𝜃) ∶=

𝐻−1
∑
ℎ=0

𝑄𝜋𝜃(𝑠ℎ, 𝑎ℎ)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ).
(7.41)

Exercise 7.5 (Unbiasedness of remaining reward estimator). We also leave the proof of The-
orem 7.5 as an exercise.

We can further reduce variance by subtracting a baseline function 𝑏𝜃 ∶ 𝒮 → ℝ. Note that
this function could also depend on the current policy parameters.
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Theorem 7.6 (Subtracting a baseline function preserves unbiasedness). Let 𝑏𝜃 ∶ 𝒮 → ℝ be
some baseline function, and let 𝜓 be a gradient coefficient function that yields an unbiased
policy gradient estimator (e.g. eq. 7.25 or eq. 7.43). Substituting

𝜓bl
ℎ (𝜏) ∶= 𝜓ℎ(𝜏) − 𝑏𝜃(𝑠ℎ) (7.42)

into the general policy gradient estimator eq. 7.23 gives an unbiased policy gradient estimator.
That is,

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔bl
𝜏 (𝜃)]

where 𝑔bl
𝜏 (𝜃) ∶=

𝐻−1
∑
ℎ=0

(𝜓ℎ(𝜏) − 𝑏𝜃(𝑠ℎ))∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ).
(7.43)

Exercise 7.6 (Unbiasedness of baseline estimator). We leave the proof of Theorem 7.6 as an
exercise as well.

For example, we might want 𝑏ℎ to estimate the average remaining reward at a given timestep:

𝑏𝜃(𝑠ℎ) = 𝔼
𝜏∼𝜌𝜋𝜃

[
𝐻−1
∑
ℎ′=ℎ

𝑟ℎ′] . (7.44)

As a better baseline, we could instead choose the value function of 𝜋𝜃. For any policy 𝜋, note
that the random variable 𝑄𝜋

ℎ(𝑠, 𝑎) − 𝑉 𝜋
ℎ (𝑠), where the randomness is taken over the action 𝑎,

is centered around zero. (Recall 𝑉 𝜋
ℎ (𝑠) = 𝔼𝑎∼𝜋 𝑄𝜋

ℎ(𝑠, 𝑎).) This quantity matches the intuition
given in sec. 7.4: it is positive for actions that are better than average (in state 𝑠), and negative
for actions that are worse than average. In fact, it has a particular name: the advantage
function.

Definition 7.4 (Advantage function). For a policy 𝜋, its advantage function 𝐴𝜋 at time ℎ is
given by

𝐴𝜋
ℎ(𝑠, 𝑎) ∶= 𝑄𝜋

ℎ(𝑠, 𝑎) − 𝑉 𝜋
ℎ (𝑠). (7.45)

Note that for an optimal policy 𝜋⋆, the advantage of a given state-action pair is always zero
or negative.

We can now use 𝐴𝜋𝜃(𝑠ℎ, 𝑎ℎ) for the gradient coefficients to obtain the ultimate unbiased policy
gradient estimator.
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Theorem 7.7 (Using the advnatage function is unbiased). Substituting

𝜓ℎ(𝜏) ∶= 𝐴𝜋𝜃(𝑠ℎ, 𝑎ℎ) (7.46)

into the general policy gradient estimator eq. 7.23 gives an unbiased estimator. That is,

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[𝑔adv
𝜏 (𝜃)]

where 𝑔adv
𝜏 (𝜃) ∶=

𝐻−1
∑
ℎ=0

𝐴𝜋𝜃(𝑠ℎ, 𝑎ℎ)∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ).
(7.47)

Proof. This follows directly from Theorem 7.5 and Theorem 7.6.

Note that to avoid correlations between the gradient estimator and the value estimator
(i.e. baseline), we must estimate them with independently sampled trajectories:

function pg_with_learned_baseline(env ∶ gym.Env, 𝜋, 𝜂 ∶ ℝ, 𝜃init, 𝐾 ∶ ℤ, 𝑁 ∶ ℤ)
𝜃 ← 𝜃init
for 𝑘 ∈ range(𝐾) do

trajectories ← sample_trajectories(env, 𝜋(𝜃) , 𝑁)
𝑉 ← fit_value(trajectories)
𝜏 ← sample_trajectories(env, 𝜋(𝜃) , 1)
∇̂ ← jnp.zeros_like(𝜃)
for (ℎ, (𝑠, 𝑎)) ∈ enumerate(𝜏) do

function log_likelihood(𝜃opt)
return log 𝜋(𝜃opt) (𝑠, 𝑎)

end function
∇̂ ← ∇̂ + ∇(log_likelihood) (𝜃) ⋅ (return_to_go(𝜏, ℎ) − 𝑉 (𝑠))

end for
𝜃 ← 𝜃 + 𝜂∇̂

end for
return 𝜃

end function
Note that you could also generalize this by allowing the learning rate 𝜂 to vary across steps,
or take multiple trajectories 𝜏 and compute the sample mean of the gradient estimates.

The baseline estimation step fit_value can be done using any appropriate supervised learning
algorithm. Note that the gradient estimator will be unbiased regardless of the baseline.
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Example 7.5 (Policy gradient for the linear-in-features parameterization). The gradient-log-
likelihood for the linear parameterization ex. 7.2 is also quite elegant:

∇ log 𝜋𝜃(𝑎|𝑠) = ∇ (𝜃⊤𝜙(𝑠, 𝑎) − log (∑
𝑎′

exp(𝜃⊤𝜙(𝑠, 𝑎′))))

= 𝜙(𝑠, 𝑎) − 𝔼
𝑎′∼𝜋𝜃(𝑠)

𝜙(𝑠, 𝑎′)

Plugging this into our policy gradient expression, we get

∇𝐽(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃

[
𝑇 −1
∑
𝑡=0

∇ log 𝜋𝜃(𝑎ℎ|𝑠ℎ)𝐴𝜋𝜃
ℎ ]

= 𝔼
𝜏∼𝜌𝜋𝜃

[
𝑇 −1
∑
𝑡=0

(𝜙(𝑠ℎ, 𝑎ℎ) − 𝔼
𝑎′∼𝜋(𝑠ℎ)

𝜙(𝑠ℎ, 𝑎′)) 𝐴𝜋𝜃
ℎ (𝑠ℎ, 𝑎ℎ)]

= 𝔼
𝜏∼𝜌𝜋𝜃

[
𝑇 −1
∑
𝑡=0

𝜙(𝑠ℎ, 𝑎ℎ)𝐴𝜋𝜃
ℎ (𝑠ℎ, 𝑎ℎ)]

Why can we drop the 𝔼 𝜙(𝑠ℎ, 𝑎′) term? By linearity of expectation, consider the dropped term
at a single timestep: 𝔼𝜏∼𝜌𝜋𝜃 [(𝔼𝑎′∼𝜋(𝑠ℎ) 𝜙(𝑠, 𝑎′)) 𝐴𝜋𝜃

ℎ (𝑠ℎ, 𝑎ℎ)] . By Adam’s Law, we can wrap
the advantage term in a conditional expectation on the state 𝑠ℎ. Then we already know that
𝔼𝑎∼𝜋(𝑠) 𝐴𝜋

ℎ(𝑠, 𝑎) = 0, and so this entire term vanishes.

7.5 Comparing policy gradient algorithms to policy iteration

What advantages do policy gradient algorithms have over the policy iteration algorithms cov-
ered in sec. 2.4.4.2?

Remark 7.7 (Policy iteration review). Recall that policy iteration is an algorithm for MDPs
with unknown state transitions where we alternate between the following two steps:

• Estimating the 𝑄-function (or advantage function) of the current policy;
• Updating the policy to be greedy with respect to this approximate 𝑄-function (or ad-

vantage function).

To analyze the difference between them, we’ll make use of the performance difference
lemma, which provides an expression for comparing the difference between two value func-
tions.
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Theorem 7.8 (Performance difference lemma (S. Kakade & Langford, 2002, Lemma 6.1)).
Suppose Alice is playing a game (an MDP). Bob is spectating, and can evaluate how good an
action is compared to his own strategy. (That is, Bob can compute his advantage function
𝐴Bob

ℎ (𝑠ℎ, 𝑎ℎ)). The performance difference lemma says that Bob can now calculate exactly how
much better or worse he is than Alice as follows:

𝑉 Alice
0 (𝑠) − 𝑉 Bob

0 (𝑠) = 𝔼
𝜏∼𝜌Alice

[
𝐻−1
∑
ℎ=0

𝐴Bob
ℎ (𝑠ℎ, 𝑎ℎ) ∣ 𝑠0 = 𝑠] (7.48)

where 𝜌Alice denotes Alice’s trajectory distribution (def. 2.7).

To see why, consider a specific step ℎ in the trajectory. We compute how much better actions
from Bob are than the actions from Alice, on average. But this is exactly the average Bob-
advantage across actions from Alice, as described in the PDL!

Proof. Formally, this corresponds to a nice telescoping simplification when we expand out the
definition of the advantage function. Note that

𝐴𝜋
ℎ(𝑠ℎ, 𝑎ℎ) = 𝑄𝜋

ℎ(𝑠ℎ, 𝑎ℎ) − 𝑉 𝜋
ℎ (𝑠ℎ)

= 𝑟ℎ(𝑠ℎ, 𝑎ℎ) + 𝔼
𝑠ℎ+1∼𝑃(⋅∣𝑠ℎ,𝑎ℎ)

[𝑉 𝜋
ℎ+1(𝑠ℎ+1)] − 𝑉 𝜋

ℎ (𝑠ℎ) (7.49)

so expanding out the r.h.s. expression of eq. 7.48 and grouping terms together gives

𝔼
𝜏∼𝜌Alice

[
𝐻−1
∑
ℎ=0

𝐴Bob
ℎ (𝑠ℎ, 𝑎ℎ) ∣ 𝑠0 = 𝑠] = 𝔼

𝜏∼𝜌Alice
[ (

𝐻−1
∑
ℎ=0

𝑟ℎ(𝑠ℎ, 𝑎ℎ))

+ (𝑉 Bob
1 (𝑠1) + ⋯ + 𝑉 Bob

𝐻 (𝑠𝐻))

− (𝑉 Bob
0 (𝑠0) + ⋯ + 𝑉 Bob

𝐻−1(𝑠𝐻−1)) ∣ 𝑠0 = 𝑠]

= 𝑉 Alice
0 (𝑠) − 𝑉 Bob

0 (𝑠).

(7.50)

as desired. Note that the “inner” expectation from expanding the advantage function has the
same distribution as the outer one, so omitting it here is valid. Also note that 𝑉 𝜋

𝐻, the value
after reaching a terminal state, is always zero for any policy 𝜋.

The PDL gives insight into why fitted approaches such as PI don’t work as well in the “full”
RL setting. To see why, let’s consider a single iteration of policy iteration, where policy 𝜋
gets updated to ̃𝜋. We’ll assume these policies are deterministic. Define Δ∞ to be the most
negative advantage:
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Δ∞ = min
𝑠∈𝒮

𝐴𝜋
ℎ(𝑠, ̃𝜋(𝑠)). (7.51)

Suppose Δ∞ < 0, i.e. there exists a state 𝑠 such that

𝐴𝜋(𝑠, ̃𝜋(𝑠)) < 0, (7.52)

that is, if ̃𝜋 acts for just one turn from state 𝑠 and then 𝜋 acts thereafter, the result would be
worse on average than allowing 𝜋 to act. Plugging this into the PDL (Theorem 7.8) gives

𝑉 𝜋
0 (𝑠) − 𝑉 𝜋

0 (𝑠) = 𝔼
𝜏∼𝜌𝜋

[
𝐻−1
∑
ℎ=0

𝐴𝜋
ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠0 = 𝑠]

≥ 𝐻Δ∞
𝑉 𝜋

0 (𝑠) ≥ 𝑉 𝜋
0 (𝑠) − 𝐻|Δ∞|.

That is, for some state 𝑠, the lower bound on the performance of ̃𝜋 is lower than the perfor-
mance of 𝜋. This doesn’t state that ̃𝜋 will necessarily perform worse than 𝜋, only suggests that
it might be possible. If these worst case states do exist, though, PI does not avoid situations
where the new policy often visits them; It does not enforce that the trajectory distributions
𝜌𝜋 and 𝜌𝜋 be close to each other. In other words, PI falls prey to distributional shift: the
“training distribution” that our prediction rule is fitted on, 𝜌𝜋, may differ significantly from
the “evaluation distribution” 𝜌𝜋.

On the other hand, policy gradient methods do, albeit implicitly, encourage 𝜌𝜋 and 𝜌𝜋 to
be similar. Suppose that the mapping from policy parameters to trajectory distributions is
relatively smooth. Then, by adjusting the parameters only a small distance, the new policy
will also have a similar trajectory distribution. But this is not very rigorous, and in practice
the parameter-to-distribution mapping may not be so smooth. Can we constrain the distance
between the resulting distributions more explicitly?

This brings us to the following local policy optimization methods:

1. trust region policy optimization (TRPO), which explicitly constrains the difference
between the distributions before and after each step;

2. the natural policy gradient (NPG), a first-order approximation of TRPO;
3. proximal policy optimization (PPO-penalty), a “soft relaxation” of TRPO;
4. the clipped surrogate objective (PPO-clip), a version of PPO that is popular in

practice.

Remark 7.8 (Ordering of algorithms). Chronologically, NPG was developed first, followed
by TRPO and later PPO. We begin with TRPO since it sets up the intuition behind these
constrained methods.
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7.6 Trust region policy optimization

We saw above that policy gradient methods are effective because they implicitly constrain how
much the policy changes at each iteration in terms of its trajectory distribution 𝜌𝜋. What hap-
pens if we explicitly constrain the distance between the new and old trajectory distributions?
This requires some way to measure the distance between two trajectory distributions. For this,
we introduce the Kullback-Leibler divergence.

Definition 7.5 (Kullback-Leibler divergence). For two PDFs 𝑝, 𝑞,

KL (𝑝 ∥ 𝑞) ∶= 𝔼
𝑥∼𝑝

[log 𝑝(𝑥)
𝑞(𝑥)] . (7.53)

The Kullback-Leibler divergence can be interpreted in many different ways, many stemming
from information theory. One such interpretation is that KL (𝑝 ∥ 𝑞) describes how much more
surprised you are if you think data is being generated by 𝑞 but it’s actually generated by 𝑝,
compared to someone who knows the true distribution 𝑝. (The surprise of an event with
probability 𝑝 is − log2 𝑝.)

It can be shown that KL (𝑝 ∥ 𝑞) = 0 if and only if 𝑝 = 𝑞. Also note that it is generally not
symmetric, that is, KL (𝑝 ∥ 𝑞) ≠ KL (𝑞 ∥ 𝑝). How can we interpret this asymmetry?

Remark 7.9 (Asymmetry of the Kullback-Leibler divergence). Note that the KL divergence
gets large if 𝑝(𝑥)/𝑞(𝑥) is very large for some 𝑥, that is, 𝑞 assigns low probability to a common
event under 𝑝. So if we minimize the KL divergence with respect to the second argument
𝑞, the “prediction” distribution, 𝑞 will “spread out” to cover all common events under 𝑝. If
we minimize the KL divergence with respect to the first argument 𝑝, the data generating
distribution, 𝑝 will “squeeze under” 𝑞, so that 𝑝(𝑥) is small wherever 𝑞(𝑥) is small.

For trajectory distributions 𝜌𝜋
𝜃𝑖 and 𝜌𝜋

𝜃′ (def. 2.7), the KL divergence can be broken down into
a sum over timesteps:

KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃′ ) = 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[log 𝜌𝜋𝜃𝑖 (𝜏) − log 𝜌𝜋𝜃′ (𝜏)]

= 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

log 𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ) − log 𝜋𝜃′(𝑎ℎ ∣ 𝑠ℎ)]
(7.54)

since the terms corresponding to the state transitions and initial state distribution cancel
out.

We can now use the KL divergence to explicitly constrain the distance between the new and
old trajectory distributions:
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Figure 7.6: Minimizing the forward and backward Kullback-Leibler divergence against a bi-
modal distribution with respect to a unimodal distribution

𝜃𝑡+1 ← arg max
𝜃′∈ℝ𝐷

𝐽(𝜃′)

where KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃′ ) < 𝛿
(7.55)

Note that we place 𝜌𝜋
𝜃′ in the second argument to the KL divergence. This ensures that 𝜌𝜋

𝜃′

supports all of the trajectories under 𝜌𝜋
𝜃𝑖 (see Remark 7.9).

In place of 𝐽 , if we use the performance difference lemma (Theorem 7.8) to compare the
performance of the new policy to the old one, we obtain an

Definition 7.6 (TRPO update rule). Let 𝜃𝑖 ∈ ℝ𝐷 denote the current policy parameter vector.
The TRPO update rule is

𝜃𝑘+1 ← arg max
𝜃′∈ℝ𝐷

𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

𝔼
𝑎′

ℎ∼𝜋𝜃′ (⋅∣𝑠ℎ)
𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎′

ℎ)]

where KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃′ ) < 𝛿
(7.56)

Remark 7.10 (Drawing states from old policy). Note that we have made a small change to the
eq. 7.48: we use the current policy’s trajectory distribution, and re-sample actions from the
updated policy. This allows us to reuse a single batch of trajectories from 𝜋𝜃𝑖 rather than sample
new batches from 𝜋𝜃′ when solving the optimization problem eq. 7.56. This approximation
also matches the r.h.s. of the PDL to first order in 𝜃. (We will elaborate more on this later.)

The above isn’t entirely complete: we still need to solve the actual optimization problem at
each step. Unless we know additional properties of the problem, this is still a nonconvex
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function trpo(env, 𝛿, 𝜃init, 𝑛interactions)
𝜃 ← 𝜃init
for 𝑘 ∈ range(𝐾) do

trajectories ← sample_trajectories(env, 𝜋(𝜃) , 𝑛interactions)
𝐴 ← fit_advantage(trajectories)
function approximate_gain(𝜃opt)

𝐴total ← 0
for 𝜏 ∈ trajectories do

for (𝑠, _a, _r) ∈ 𝜏 do
for 𝑎 ∈ env.action_space do

𝐴total ← 𝐴total + 𝜋(𝜃) (𝑠, 𝑎) ⋅ 𝐴(𝑠, 𝑎)
end for

end for
end for
return 𝐴total

end function
function constraint(𝜃opt)

return kl_div_trajectories(𝜋, 𝜃, 𝜃opt, trajectories) ≤ 𝛿
end function
𝜃 ← optimize(approximate_gain, constraint)

end for
return 𝜃

end function

Figure 7.7: Pseudocode for trust region policy optimization
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constrained optimization problem that might be inefficient to solve. Do we need to solve for
the exact objective function, though? Instead, if we assume that both the objective function
and the constraint are somewhat smooth in terms of the policy parameters, we can use their
Taylor expansions to give us a simpler optimization problem with a closed-form solution. This
brings us to the natural policy gradient algorithm.

7.7 Natural policy gradient

In some sense, the natural policy gradient algorithm (S. M. Kakade, 2001) is an implementation
of trust region policy optimization (fig. 7.7). Recall that in each TRPO update, we seek to
maximize the expected total reward while keeping the updated policy close to the current
policy in terms of Kullback-Leibler divergence (def. 7.5):

𝜃𝑘+1 ← arg max
𝜃′∈ℝ𝐷

𝐽(𝜃′)

where KL (𝜃𝑖 ∥ 𝜃′) ≤ 𝛿
(7.57)

NPG uses the following simplification: we take local approximations of the objective and
constraint functions, which results in a simple problem with a closed-form solution.

Concretely, we take a first-order Taylor approximation to the objective function about the
current iterate 𝜃𝑖:

𝐽(𝜃′) = 𝐽(𝜃𝑖) + (𝜃′ − 𝜃𝑖)⊤∇𝐽(𝜃𝑖) + 𝑂(‖𝜃′ − 𝜃𝑖‖2). (7.58)

We also take a second-order Taylor approximation to the constraint function:

Theorem 7.9 (Quadratic approximation to KL divergence.). The second-order approximation
to 𝑑𝑖(𝜃) ∶= KL (𝑝𝜃𝑖 ∥ 𝑝𝜃) is given by

𝑑𝑖(𝜃) = 1
2(𝜃 − 𝜃𝑖)⊤𝐹𝜃𝑖(𝜃 − 𝜃𝑖) + 𝑂(‖𝜃 − 𝜃𝑖‖3), (7.59)

where 𝐹𝜃𝑖 is the Fisher information matrix (FIM) of the trajectory distribution 𝜌𝜋𝜃𝑖 . (We
define the FIM below in def. 7.7.)

Proof. We leave the details as an exercise. Here is an outline:

1. Write down the Taylor expansion of 𝑑𝑖(𝜃) around 𝜃𝑖.
2. Show that the zeroth-order term 𝑑𝑖(𝜃𝑖) is zero.
3. Show that the gradient ∇𝑑𝑖(𝜃)|𝜃=𝜃𝑖 is zero.
4. Show that the Hessian ∇2𝑑𝑖(𝜃)|𝜃=𝜃𝑖 equals 𝐹𝜃𝑖 .
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Definition 7.7 (Fisher information matrix). Let 𝑝𝜃 denote a distribution parameterized by 𝜃.
Its Fisher information matrix 𝐹𝜃 can be defined equivalently as:

𝐹𝜃 = 𝔼
𝑥∼𝑝𝜃

[(∇𝜃 log 𝑝𝜃(𝑥))(∇𝜃 log 𝑝𝜃(𝑥))⊤]

= 𝔼
𝑥∼𝑝𝜃

[−∇2
𝜃 log 𝑝𝜃(𝑥)]. (7.60)

Remark 7.11 (Interpretation of the Fisher information matrix). The Fisher information matrix
is an important quantity when working with parameterized distributions. It has many possible
interpretations. The first expression in eq. 7.60 shows that it is the covariance matrix of the
gradient-log-probability (also known as the score), and the second expression shows that it is
the expected Hessian matrix of the negative-log-likelihood of the underlying distribution. It
can also be shown that it is precisely the Hessian of the KL divergence (with respect to either
one of the parameters).

Recall that the Hessian of a function describes its curvature. Concretely, suppose we have
some parameter vector 𝜃 ∈ ℝ𝐷 and we seek to measure how much 𝑝𝜃 changes if we shift 𝜃 by
𝛿 ∈ ℝ𝐷. The quantity 𝛿⊤𝐹𝜃𝛿 describes how rapidly the negative log-likelihood changes if we
move by 𝛿. (The zeroth and first order terms are both zero in our case due to properties of
the KL divergence.)

Putting this together results in the following update rule:

Definition 7.8 (Natural policy gradient update). We aim to solve the constrained optimiza-
tion problem eq. 7.57. Upon taking first- and second-order approximations of the objective
function and constraint function respectively, we obtain the update rule

𝜃𝑘+1 ← 𝜃𝑖 + arg max
Δ𝜃∈ℝ𝐷

∇𝐽(𝜃𝑖)⊤Δ𝜃

where 1
2Δ𝜃⊤𝐹𝜃𝑖Δ𝜃 ≤ 𝛿,

(7.61)

where 𝐹𝜃𝑖 is the Fisher information matrix of 𝜌𝜋
𝜃𝑖 .

eq. 7.61 is a convex optimization problem with a closed-form solution. To see why, it helps to
visualize the case where 𝜃 is two-dimensional: the constraint describes the inside of an ellipse,
and the objective function is linear, so we can find the extreme point on the boundary of the
ellipse by setting the gradient of the Lagrangian to zero:
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ℒ(𝜃, 𝛼) = ∇𝐽(𝜃𝑖)⊤(𝜃 − 𝜃𝑖) − 𝛼 [1
2(𝜃 − 𝜃𝑖)⊤𝐹𝜃𝑖(𝜃 − 𝜃𝑖) − 𝛿]

∇ℒ(𝜃𝑘+1, 𝛼) ∶= 0
⟹ ∇𝐽(𝜃𝑖) = 𝛼𝐹𝜃𝑖(𝜃𝑘+1 − 𝜃𝑖)

(7.62)

Rearranging gives the NPG update rule:

𝜃𝑘+1 = 𝜃𝑖 + 𝜂𝐹 −1
𝜃𝑖 ∇𝐽(𝜃𝑖)

where 𝜂 = √ 2𝛿
∇𝐽(𝜃𝑖)⊤𝐹 −1

𝜃𝑖 ∇𝐽(𝜃𝑖)
(7.63)

This gives us the closed-form update.

Remark 7.12 (Scalability of NPG). Having a closed-form solution might at first seem like
brilliant news. Is there a catch? The challenge lies in computing the inverse Fisher information
matrix (FIM) 𝐹 −1

𝜃𝑖 . Since it is an expectation over trajectories, computing it exactly is typically
intractable. Instead, we could collect trajectories from the environment and approximate the
expectation by a sample mean, since we can write the Fisher information matrix as

𝐹𝜃 = 𝔼
𝜏∼𝜌𝜋𝜃

[
𝐻−1
∑
ℎ=0

(∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ))(∇ log 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ))⊤] . (7.64)

Note that we’ve used the Markov property to cancel out the cross terms corresponding to two
different time steps.

It turns out that to estimate the FIM to a relative error of 𝜖, we need 𝑂(𝐷/𝜖2) samples
(Vershynin, 2018, Remark 4.7.2). In order for the estimated FIM to be accurate enough to be
useful, this can be too large to be practical. Taking the inverse also takes 𝑂(𝐷3) time, which
can be expensive if the parameter space is large.

Remark 7.13 (NPG accounts for curvature in the parameter space). Let us compare the original
policy gradient update (eq. 7.17) to the NPG update (eq. 7.63):

𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇𝐽(𝜃𝑡) Policy gradient
𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝐹 −1

𝜃𝑡 ∇𝐽(𝜃𝑡) Natural policy gradient
(7.65)

The NPG update preconditions the gradient by the inverse Fisher information matrix. Speak-
ing abstractly, this matrix accounts for the geometry of the parameter space in the
following sense.
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The typical gradient descent algorithm implicitly measures distances between parameters using
the typical “flat” Euclidean distance:

distance(𝜃0, 𝜃1) = ‖𝜃0 − 𝜃1‖. (7.66)

The NPG update measures distance between parameters as the KL divergence (def. 7.5) be-
tween their induced trajectory distributions:

distance(𝜃0, 𝜃1) = KL (𝜌𝜋𝜃0 ∥ 𝜌𝜋𝜃1 ) . (7.67)

Using a parameterized policy class is just a means to the end of optimizing the trajectory
distribution, so it makes sense to optimize over the trajectory distributions directly. In fact,
the NPG update is the only update that is invariant to reparameterizations of the policy space:
if instead of 𝜃, we used some transformation 𝜙(𝜃) to parameterize the policy, the NPG update
would remain the same. This is why NPG is called a coordinate-free optimization algorithm.

We can illustrate this with the following example:

Example 7.6 (Natural gradient on a simple problem). Let’s step away from RL and consider
a simple optimization problem over Bernoulli distributions 𝑝𝜃 ∈ △({0, 1}). This distribution
space is parameterized by the success probability 𝜃 ∈ [0, 1]. The per-sample objective function
is 100 if the Bernoulli trial succeeds and 1 if the trial fails.

𝑓(𝑥) = {100 𝑥 = 1
1 𝑥 = 0. (7.68)

The objective 𝐽(𝜃) is the average of 𝑓 over 𝑥 ∼ 𝑝𝜃:

𝐽(𝜃) = 𝔼
𝑥∼𝑝𝜃

[𝑓(𝑥)]

= 100𝜃 + 1(1 − 𝜃)
(7.69)

We can think of the space of such distributions as the line between (0, 1) to (1, 0) on the
Cartesian plane:
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Figure 7.8: The space of Bernoulli distributions.

Clearly the optimal distribution is the constant one 𝜋(1) = 1. Suppose we optimize over the
parameterized family 𝜋𝜃(1) = exp(𝜃)

1+exp(𝜃) . Then our optimization algorithm should set 𝜃 to be
unboundedly large. Then the “parameter-space” gradient is

∇𝜃𝐽(𝜋𝜃) = 99 exp(𝜃)
(1 + exp(𝜃))2 .

Note that as 𝜃 → ∞ that the increments get closer and closer to 0; the rate of increase becomes
exponentially slow.

However, if we compute the Fisher information “matrix” (which is just a scalar in this case),
we can account for the geometry induced by the parameterization.

𝐹𝜃 = 𝔼
𝑥∼𝜋𝜃

[(∇𝜃 log 𝜋𝜃(𝑥))2]

= exp(𝜃)
(1 + exp(𝜃))2 .

This gives the natural gradient update

𝜃𝑘+1 = 𝜃𝑖 + 𝜂𝐹 −1
𝜃𝑖 ∇𝜃𝐽(𝜃𝑖)

= 𝜃𝑖 + 99𝜂

which increases at a constant rate, i.e. improves the objective more quickly than parameter-
space gradient descent.
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Though the NPG now gives a closed-form optimization step, it requires estimating and com-
puting the inverse Fisher information matrix, which can be difficult or slow, especially as
the parameter space gets large (Remark 7.12). Can we achieve a similar effect without the
inverse Fisher information matrix? This brings us to the proximal policy optimization
algorithm.

7.8 Penalty-based proximal policy optimization

We can relax the TRPO optimization problem (eq. 7.56) in a different way: Rather than
imposing a hard constraint

KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃′ ) < 𝛿, (7.70)

we can instead impose a soft constraint by subtracting 𝜆KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃′ ) from the function to
be maximized. 𝜆 > 0 is a coefficient that controls the tradeoff between the two terms. This
gives the following objective (Schulman et al., 2017):

𝜃𝑘+1 ← arg max
𝜃′

𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

𝔼
𝑎′

ℎ∼𝜋𝜃(𝑠ℎ)
𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎′

ℎ)] − 𝜆KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃′ ) (7.71)

This optimization problem is also known as the Lagrangian formulation of eq. 7.56.

How do we solve this optimization? Let us begin by simplifying the KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃) term. The
state transitions cancel as in eq. 7.54, which gives us

KL (𝜌𝜋𝜃𝑖 ∥ 𝜌𝜋𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[log 𝜌𝜋𝜃𝑖 (𝜏)
𝜌𝜋𝜃(𝜏) ]

= 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

log 𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ)
𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ) ]

= 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

log 1
𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ)] + 𝑐

where 𝑐 doesn’t depend on 𝜃 and can be ignored. This gives the objective

𝐿𝑘(𝜃) = 𝔼
𝑠0,…,𝑠𝐻−1∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

𝔼
𝑎ℎ∼𝜋𝜃(𝑠ℎ)

𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ)] − 𝜆 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

log 1
𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ)]

Once again, this takes an expectation over trajectories. But here we cannot directly sample
trajectories from 𝜋𝜃𝑖 , since in the first term, the actions actually come from 𝜋𝜃. To make
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this term line up with the other expectation, we would need the actions to also come from
𝜋𝜃𝑖 . This should sound familiar: we want to estimate an expectation over one distribution by
sampling from another. We can use importance sampling (Theorem 7.3) to rewrite the inner
expectation:

𝔼
𝑎ℎ∼𝜋𝜃′ (𝑠ℎ)

𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ) = 𝔼
𝑎ℎ∼𝜋𝜃𝑖 (𝑠ℎ)

[𝜋𝜃′(𝑎ℎ ∣ 𝑠ℎ)
𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ)𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ)] (7.72)

Remark 7.14 (Interpretation of likelihood ratio). Suppose 𝑎+ is a “good” action for 𝜋𝜃𝑖 in state
𝑠ℎ, i.e. 𝐴𝜋

𝜃𝑖(𝑠ℎ, 𝑎+) > 0. Then maximizing eq. 7.72 encourages 𝜃′ to increase the probability
ratio 𝜋𝜃′(𝑎ℎ ∣ 𝑠ℎ)/𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ).
Otherwise, if 𝑎− is a “bad” action for 𝜋𝜃𝑖 in state 𝑠ℎ (i.e. 𝐴𝜋

𝜃𝑖(𝑠ℎ, 𝑎−) < 0), then maximizing
eq. 7.72 encourages 𝜃′ to decrease the probability ratio 𝜋𝜃′(𝑎ℎ ∣ 𝑠ℎ)/𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ).

Now we can combine the expectations together to get the objective

Definition 7.9 (Penalty objective).

𝐿𝑘(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

( 𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ)
𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ)𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ) − 𝜆 log 1

𝜋𝜃(𝑎ℎ ∣ 𝑠ℎ))]

Now we can estimate this function by a sample mean over trajectories from 𝜋𝜃𝑖 . Remember
that to complete a single iteration of PPO, we execute

𝜃𝑘+1 ← arg max
𝜃

𝐿𝑘(𝜃).

If 𝐿𝑘 is differentiable, we can optimize it by gradient descent, completing a single iteration of
PPO.
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function ppo_proximal(env, 𝜋 ∶ (ℝ𝐷) → (State × Action) → ℝ, 𝜆 ∶ ℝ, 𝜃init ∶ ℝ𝐷, 𝑛iters ∶ ℤ, n_fit_trajectories ∶ ℤ, n_sample_trajectories ∶ ℤ)
𝜃 ← 𝜃init
for 𝑘 ∈ range(𝑛iters) do

fit_trajectories ← sample_trajectories(env, 𝜋(𝜃) , n_fit_trajectories)
𝐴 ← fit(fit_trajectories)
sample_trajectories ← sample_trajectories(env, 𝜋(𝜃) , n_sample_trajectories)
function objective(𝜃opt)

total_objective ← 0
for 𝜏 ∈ sample_trajectories do

for (𝑠, 𝑎, _r) ∈ 𝜏 do
total_objective ← total_objective + 𝜋(𝜃opt)(𝑠,𝑎)

𝜋(𝜃)(𝑠,𝑎) 𝐴(𝑠, 𝑎) + 𝜆 ⋅ log 𝜋(𝜃opt) (𝑠, 𝑎)
end for

end for
return total_objective

n_sample_trajectories
end function
𝜃 ← optimize(objective, 𝜃)

end for
return 𝜃

end function

7.9 Advantage clipping

Recall that the main point of proximal policy optimization methods (TRPO, NPG, PPO) is to
encourage the updated policy (after taking a gradient step) to remain similar to the current one.
These methods used the KL divergence to measure the distance between policies. Schulman
et al. (2017) proposed an alternative way to constrain the step size based on clipping a certain
objective function. This method, known as “PPO-clip” or the “clipped surrogate” objective
function, is the most widely used proximal policy optimization algorithm in practice.

Above, in eq. 7.72, we constructed an objective function by applying importance sampling to
the performance difference lemma (Theorem 7.8). Without the KL divergence penalty, this
becomes

𝐿𝑘(𝜃′) = 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

𝜋𝜃′(𝑎ℎ ∣ 𝑠ℎ)
𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ)𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ)] ≈ 𝑉 (𝜋𝜃′) − 𝑉 (𝜋𝜃𝑖). (7.73)

In the following part, define the policy ratio at time ℎ ∈ [𝐻] as

Λℎ(𝜃′, 𝜃𝑖) = 𝜋𝜃′(𝑎ℎ ∣ 𝑠ℎ)
𝜋𝜃𝑖(𝑎ℎ ∣ 𝑠ℎ) . (7.74)
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The clipped surrogate objective function modifies eq. 7.73 to remove incentives for 𝜋𝜃′ to
differ greatly from 𝜋𝜃𝑖 . Specifically, we choose some small 𝜖 > 0, and constrain Λℎ(𝜃′, 𝜃𝑖) ∈
(1 − 𝜖, 1 + 𝜖). Formally,

Λclipped
ℎ (𝜃′, 𝜃𝑖) = clip(Λℎ(𝜃′, 𝜃𝑖), 1 − 𝜖, 1 + 𝜖), (7.75)

where

clip(𝑥, 𝑎, 𝑏) ∶= max{𝑎, min{𝑥, 𝑏}}. (7.76)

Remark 7.15 (Interpretation). As in Remark 7.14, suppose 𝑎+
ℎ and 𝑎−

ℎ are a “good” and “bad”
action in 𝑠ℎ, i.e. 𝐴𝜋

𝜃𝑖(𝑠ℎ, 𝑎+
ℎ ) > 0 and 𝐴𝜋

𝜃𝑖(𝑠ℎ, 𝑎−
ℎ ) < 0. By clipping Λℎ(𝜃′, 𝜃𝑖), no additional

benefit is gained by increasing 𝜋𝜃′(𝑎+
ℎ ∣ 𝑠ℎ) above (1 + 𝜖)𝜋𝜃𝑖(𝑎+

ℎ ∣ 𝑠ℎ), or by decreasing 𝜋𝜃𝑖(𝑎−
ℎ ∣

𝑠ℎ) under (1 − 𝜖)𝜋𝜃𝑖(𝑎−
ℎ ∣ 𝑠ℎ).

As a final step, we only use this clipped objective if it is smaller than the original objective.
For example, if 𝐴𝜋

𝜃𝑖(𝑠ℎ, 𝑎ℎ) > 0 and Λℎ(𝜃′, 𝜃𝑖) ≪ 1 − 𝜖, then the clipped objective would
disproportionately incentivize taking action 𝑎ℎ. The same thing happens if 𝐴𝜋

𝜃𝑖(𝑠ℎ, 𝑎ℎ) < 0
and Λℎ(𝜃′, 𝜃𝑖) > 1 + 𝜖.
Putting these together, this results in only clipping the policy ratio on the side that it would
normally move towards:

(a) For a “good” action 𝑎+
ℎ with positive advantage.(b) For a “poor” action 𝑎−

ℎ with negative advantage.

Figure 7.9: Clipped surrogate objective function

Definition 7.10 (Clipped surrogate objective). The PPO-Clip objective is
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𝐿𝑖(𝜃) = 𝔼
𝜏∼𝜌𝜋𝜃𝑖

[
𝐻−1
∑
ℎ=0

min {Λℎ(𝜃, 𝜃𝑖)𝐴𝜋𝜃𝑖 (𝑠ℎ, 𝑎ℎ), clip(Λℎ(𝜃, 𝜃𝑖), 1 − 𝜖, 1 + 𝜖)𝐴𝜋
𝜃𝑖(𝑠ℎ, 𝑎ℎ)}]

(7.77)

Remark 7.16 (Convergence of the clipped surrogate objective). From a traditional optimization
perspective, this objective function seems challenging to analyze: the clip operation (eq. 7.76)
is not differentiable

7.10 Key takeaways

Policy gradient methods are a powerful family of algorithms that optimize the expected total
reward by iteratively updating the policy parameters. Precisely, we estimate the gradient of
the expected total reward (with respect to the parameters), and update the parameters in
that direction. But estimating the gradient is a tricky task! We saw many ways to reduce the
variance of the gradient estimator, culminating in the advantage-based expression eq. 7.47.

But updating the parameters doesn’t entirely solve the problem: Sometimes, a small step in
the parameters might lead to a big step in the policy. To avoid changing the policy too much at
each step, we must account for the curvature in the parameter space. We first did this explicitly
with sec. 7.6, and then saw ways to relax the constraint via the natural policy gradient update
(sec. 7.7), the PPO-KL update (sec. 7.8), and the PPO-Clip update (sec. 7.9).

These are still popular methods to this day, especially because they efficiently integrate with
deep neural networks for representing complex functions.

7.11 Bibliographic notes and further reading

Sutton et al. (1999) popularized the term “policy gradient methods”. Policy gradient methods,
including REINFORCE (Williams, 1992), were some of the earliest reinforcement learning
methods (Barto et al., 1983; Sutton, 1984; Witten, 1977).

S. Kakade & Langford (2002) introduced the performance difference lemma, which was used
to prove theoretical guarantees in several later works.

The expression of the policy gradient in terms of the Q-function was simultaneously observed
by Marbach & Tsitsiklis (2001) and Sutton et al. (1999).

The natural gradient was suggested by Amari (1998) for general optimization problems and
then applied to the policy gradient by S. M. Kakade (2001). The Natural Actor-Critic

144



algorithm combines actor-critic learning with the natural policy gradient estimator (Bhatnagar
et al., 2009; Peters et al., 2005; Peters & Schaal, 2008).

Natural gradient descent is effective because it accounts for the geometry induced by the pa-
rameterization and thereby optimizes over the distributions themselves. Another optimization
algorithm that accounts for parameter-space geometry is mirror descent (Beck & Teboulle,
2003; Nemirovskij et al., 1983). At each optimization step, this maps the parameter vector to a
dual space defined to capture the desired geometry. It then takes a gradient descent step on the
dual parameters and maps the result back to an updated “primal” parameter vector. One can
also apply mirror descent to policy gradient algorithms (Mahadevan et al., 2013; Mahadevan
& Liu, 2012).

A key reason for the popularity of policy gradient methods is that they are easily parallelizable
across multiple computing threads. Each thread collects rollouts and computes its own gradient
estimates, and every once in a while, these are accumulated across threads and used to perform
an update of the parameters, which are then synchronized across the different threads. Mnih
et al. (2016) present multi-threaded variants of policy gradient methods as well as several
algorithms from Chapter 6. Schulman et al. (2015) proposed TRPO (def. 7.6). Schulman
et al. (2016) introduced generalized advantage estimation (GAE), which accepts some
bias in the gradient estimate in exchange for lower variance. This tradeoff is controlled by the
parameter 𝜆, the same parameter as in TD(𝜆). Schulman et al. (2017) introduced the PPO-KL
and PPO-Clip algorithms. Wu et al. (2017) introduced the ACKTR algorithm, which seeks
to scale NPG up to deep learning models where naively approximating the Fisher information
matrix is impractical. It does so using the Kronecker-factored approximation proposed in
Martens & Grosse (2015). Shao et al. (2024) introduce a variant of PPO known as Group
Relative Policy Optimization (GRPO).

Policy gradient methods, being on-policy algorithms, inherently have worse sample efficiency
than off-policy algorithms, since naively each sample can only be used to update at the value
of the parameter vector that it was sampled at. Wang et al. (2017) introduce the actor-critic
with experience replay (ACER) algorithm, which builds on the Retrace Q function esti-
mator (Munos et al., 2016) to estimate policy gradients using previously collected experience
(Lin, 1992).

The soft Q-learning and soft actor-critic algorithms introduced in Haarnoja et al. (2017)
and Haarnoja et al. (2018) respectively add the entropy of the policy to the objective function.
This practice is known as maximum entropy reinforcement learning since we seek to
maximize the policy entropy alongside the expected total reward. This encourages policies
that “act more randomly”, which aids exploration.
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8 Imitation Learning

8.1 Introduction

Imagine you are tasked with learning how to drive. How do, or did, you go about it? At
first, this task might seem insurmountable: there are a vast array of controls, and the cost of
making a single mistake could be extremely high, making it hard to explore by trial and error.
Luckily, there are already people in the world who know how to drive who can get you started.
In almost every challenge we face, we “stand on the shoulders of giants” and learn skills from
experts who have already mastered them.

Figure 8.1: A robot imitating the pose of a young child. Image from Danilyuk (2021).
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In machine learning, we often try to teach machines to accomplish tasks that humans are
already proficient at. In such cases, the machine learning algorithm is the one learning the new
skill, and humans are the “experts” that can demonstrate how to perform the task. Imitation
learning is an approach to sequential decision-making where we aim to learn a policy that
performs at least as well as the expert. It is often used as a first step for complex tasks where
it is too challenging to learn from scratch or difficult to specify a reward function that captures
the desired behaviour.

We’ll see that the most naive form of imitation learning, called behaviour cloning, is re-
ally an application of supervised learning to interactive tasks. We’ll then explore dataset
aggregation (DAgger) as a way to query an expert and learn even more effectively.

8.2 Behaviour cloning

This notion of “learning from human-provided data” may remind you of the basic premise of
Chapter 5. In supervised learning, there is some mapping from inputs to outputs, such as the
task of assigning the correct label to an image, that humans can implicitly compute. To teach
a machine to calculate this mapping, we first collect a large training dataset by getting people
to label a lot of inputs, and then use some optimization algorithm to produce a predictor that
maps from the inputs to the outputs as closely as possible.

How does this relate to interactive tasks? Here, the input is the observation seen by the agent
and the output is the action it selects, so the mapping is the agent’s policy. What’s stopping
us from applying supervised learning techniques to mimic the expert’s policy? In principle,
nothing! This is called behaviour cloning.

Definition 8.1 (Behaviour cloning).

1. Collect a training dataset of trajectories 𝒟 = (𝑠𝑛, 𝑎𝑛)𝑁
𝑛=1 generated by an expert policy

𝜋expert. (For example, if the dataset contains 𝑀 trajectories, each with a finite horizon
𝐻, then 𝑁 = 𝑀 × 𝐻.)

2. Use a supervised learning algorithm fit ∶ 𝒟 ↦ ̃𝜋 to extract a policy ̃𝜋 that approximates
the expert policy.

Typically, this second task can be framed as empirical risk minimization (which we previ-
ously saw in sec. 5.3.2):

̃𝜋 = arg min
𝜋∈Π

𝑁−1
∑
𝑛=0

loss(𝜋(𝑠𝑛), 𝑎𝑛) (8.1)
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where Π is some class of possible policies, loss is the loss function to measure how different
the policy’s prediction is from the true observed action, and the supervised learning algorithm
itself, also known as the fitting method, tells us how to compute this arg min.

How should we choose the loss function? In supervised learning, we saw that the mean
squared error is a good choice for continuous outputs. However, how should we measure
the difference between two actions in a discrete action space? In this setting, the policy acts
more like a classifier that picks the best action in a given state. Rather than considering a
deterministic policy that just outputs a single action, we’ll consider a stochastic policy 𝜋 that
outputs a distribution over actions. This allows us to assign a likelihood to observing the entire
dataset 𝒟 under the policy 𝜋, as if the state-action pairs are independent:

ℙ𝜋(𝒟) =
𝑁

∏
𝑛=1

𝜋(𝑎𝑛 ∣ 𝑠𝑛) (8.2)

Note that the states and actions are not, however, actually independent! A key property of
interactive tasks is that the agent’s output – the action that it takes – may influence its next
observation. We want to find a policy under which the training dataset 𝒟 is the most likely.
This is called the maximum likelihood estimate of the policy that generated the dataset:

̃𝜋 = arg max
𝜋∈Π

ℙ𝜋(𝒟) (8.3)

This is also equivalent to doing empirical risk minimization with the negative log likelihood
as the loss function:

̃𝜋 = arg min
𝜋∈Π

− log ℙ𝜋(𝒟)

= arg min
𝜋∈Π

𝑁
∑
𝑛=1

− log 𝜋(𝑎𝑛 ∣ 𝑠𝑛)
(8.4)

Can we quantify how well this algorithm works? For simplicity, let’s consider the case where
the action space is finite and both the expert policy and learned policy are deterministic.

Theorem 8.1 (Performance of behaviour cloning). Suppose the learned policy obtains 𝜀 classi-
fication error. That is, for trajectories drawn from the expert policy, the learned policy chooses
a different action at most 𝜀 of the time:

𝔼𝜏∼𝜌𝜋expert [ 1
𝐻

𝐻−1
∑
ℎ=0

1 { ̃𝜋(𝑠ℎ) ≠ 𝜋expert(𝑠ℎ)}] ≤ 𝜀 (8.5)

Then, their value functions differ by
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|𝑉 𝜋expert − 𝑉 𝜋| ≤ 𝐻2𝜀

where 𝐻 is the horizon of the problem.

Proof. Recall the Performance Difference Lemma (Theorem 7.8). The Performance Difference
Lemma allows us to express the difference between 𝜋 − expert and ̃𝜋 as

𝑉 𝜋expert
0 (𝑠) − 𝑉 𝜋

0 (𝑠) = 𝔼
𝜏∼𝜌𝜋expert ∣𝑠0=𝑠

[
𝐻−1
∑
ℎ=0

𝐴𝜋
ℎ(𝑠ℎ, 𝑎ℎ)] . (8.6)

Now since the expert policy is deterministic, we can substitute 𝑎ℎ = 𝜋expert(𝑠ℎ). This allows
us to make a further simplification: since 𝜋expert is deterministic, the advantage of the chosen
action is exactly zero:

𝐴𝜋expert(𝑠, 𝜋expert(𝑠)) = 𝑄𝜋expert(𝑠, 𝜋expert(𝑠)) − 𝑉 𝜋expert(𝑠) = 0. (8.7)

But the right-hand-side of eq. 8.6 uses 𝐴𝜋, not 𝐴𝜋−expert. To bridge this gap, we now use
the assumption that ̃𝜋 obtains 𝜀 classification error. Note that 𝐴𝜋

ℎ(𝑠ℎ, 𝜋expert(𝑠ℎ)) = 0 when
𝜋expert(𝑠ℎ) = ̃𝜋(𝑠ℎ). In the case where the two policies differ on 𝑠ℎ, which occurs with probabil-
ity 𝜀, the advantage is naively upper bounded by 𝐻 (assuming rewards are bounded between
0 and 1). Taking the final sum gives the desired bound.

8.3 Distribution shift

Let us return to the driving analogy. Suppose you have taken some driving lessons and now
feel comfortable in your neighbourhood. But today you have to travel to an area you haven’t
visited before, such as a highway, where it would be dangerous to try and apply the techniques
you’ve already learned. This is the issue of distribution shift: a policy learned under a certain
distribution of states may perform poorly if the distribution of states changes.

This is already a common issue in supervised learning, where the training dataset for a model
might not resemble the environment where it gets deployed. In interactive environments,
this issue is further exacerbated by the dependency between the observations and the agent’s
behaviour; if you take a wrong turn early on, it may be difficult or impossible to recover in
that trajectory.

How could you learn a strategy for these new settings? In the driving example, you might
decide to install a dashcam to record the car’s surroundings. That way, once you make it back
to safety, you can show the recording to an expert, who can provide feedback at each step
of the way. Then the next time you go for a drive, you can remember the expert’s advice,
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and take a safer route. You could then repeat this training as many times as desired, thereby
collecting the expert’s feedback over a diverse range of locations. This is the key idea behind
dataset aggregation.

8.4 Dataset aggregation (DAgger)

The DAgger algorithm assumes that we have query access to the expert policy. That is, for a
given state 𝑠, we can ask for the expert’s action 𝜋expert(𝑠) in that state. We also need access to
the environment for rolling out policies. This makes DAgger an online algorithm, as opposed
to pure behaviour cloning, which is offline since we don’t need to act in the environment at
all.

You can think of DAgger as a specific way of collecting the dataset 𝒟.

Definition 8.2 (DAgger algorithm). Inputs: 𝜋expert, an initial policy 𝜋init, the number of
iterations 𝑇 , and the number of trajectories 𝑁 to collect per iteration.

1. Initialize 𝒟 = {} (the empty set) and 𝜋 = 𝜋init.
2. For 𝑖 = 1, … , 𝐼 :

• Collect 𝑇 trajectories 𝜏0, … , 𝜏𝑇 −1 using the current policy 𝜋.
• For each trajectory 𝜏𝑛:

– Replace each action 𝑎ℎ in 𝜏𝑛 with the expert action 𝜋expert(𝑠ℎ).
– Call the resulting trajectory 𝜏 expert

𝑛 .
• 𝒟 ← 𝒟 ∪ {𝜏 expert

1 , … , 𝜏 expert
𝑛 }.

• Let 𝜋 ← fit(𝒟), where fit is a behaviour cloning algorithm.

3. Return 𝜋.

We leave the implementation as an exercise. How well does DAgger perform?

Theorem 8.2 (Performance of DAgger). Let 𝜋expert be the expert policy and 𝜋DAgger be the
policy resulting from DAgger. In 𝐼 = 𝑂(𝐻2) iterations, with high probability,

|𝑉 𝜋expert − 𝑉 𝜋DAgger | ≤ 𝐻𝜀, (8.8)

where 𝜀 is the “classification error” guaranteed by the supervised learning algorithm.
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8.5 Key takeaways

Given a task where learning from scratch is too challenging, if we have access to expert data,
we can use supervised learning to find a policy that imitates the expert demonstrations.

The simplest way to do this is to apply a supervised learning algorithm to an already-collected
dataset of expert state-action pairs. This is called behaviour cloning. However, given query
access to the expert policy, we can do better by integrating its feedback in an online loop.
The DAgger algorithm is one way of doing this, where we use the expert policy to augment
trajectories and then learn from this augmented dataset using behaviour cloning.

8.6 Bibliographic notes and further reading

Earlier interest in imitation learning arose in the context of autonomous driving (Pomerleau,
1991). This task is suitable for imitation learning since expert (or near-expert) driving data
is readily available. It is also challenging to express a reward function that captures exactly
what we mean by “good driving”. Imitation learning methods sidestep this issue by directly
training the algorithm to imitate expert demonstrations. The DAgger algorithm (def. 8.2) is
due to Ross et al. (2010). The performance guarantee is stated as Ross et al. (2010, thm.
3.4).

Another approach is to infer the reward function from the expert trajectories. This is known
as the inverse reinforcement learning (IRL) problem (Abbeel & Ng, 2004; Ng & Russell,
2000; S. Russell, 1998). The typical RL problem is going from a reward function to an optimal
policy, so the inverse problem is going from an optimal policy to the underlying reward function.
One can then use typical RL techniques to optimize for the inferred reward function. This
tends to generalize better than direct behaviour cloning. The challenge is that this problem
is not well-defined, since any policy is optimal for infinitely many possible reward functions.
This means that the researcher must come up with a useful “regularization” assumption to
select which of the possible reward functions is the most plausible. Three common modelling
assumptions are maximum-margin IRL (Ng & Russell, 2000; Ratliff et al., 2006), Bayesian
IRL (Ramachandran & Amir, 2007), and maximum-entropy IRL (Ziebart et al., 2008,
2010).

Another framework for learning behaviour from expert demonstrations is generative adver-
sarial imitation learning (Ho & Ermon, 2016; Orsini et al., 2021), inspired by generative
adversarial networks (GANs) (Goodfellow et al., 2020). Rather than first learning a reward
function from expert data and then optimizing the policy in a separate phase, generative ad-
versarial imitation learning simultaneously learns the reward function and the optimal policy,
leading to improved performance.

We can infer a reward function from other expert data besides demonstrations. Expert demon-
strations provide a lot of signal but can be prohibitively expensive to collect for some tasks. It
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is often easier to recognize a good solution than to generate one. This leads to the related ap-
proach of reinforcement learning from human feedback (RLHF). Instead of inferring a
reward function from expert demonstrations, we instead infer a reward function from a dataset
of expert rankings of trajectories. This is the dominant approach used in RL finetuning of large
language models (Ouyang et al., 2022; Ziegler et al., 2020). We recommend Lambert (2024)
for a comprehensive treatment of RLHF.

Piot et al. (2017) unifies imitation learning and IRL in the set-policy framework. Gleave et
al. (2022) is a library of modular implementations of imitation learning algorithms in PyTorch.
We recommend Zare et al. (2024) for a more comprehensive survey of imitation learning.
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9 Tree Search Methods

9.1 Introduction

Have you ever lost a strategy game against a skilled opponent? It probably seemed like they
were ahead of you at every turn. They might have been planning ahead and anticipating your
actions, then formulating their strategy to counter yours. If this opponent was a computer,
they might have been using one of the strategies that we are about to explore.

9.2 Deterministic, zero sum, fully observable two-player games

In this chapter, we will focus on games that are:

• deterministic,
• zero sum (one player wins and the other loses),
• fully observable, that is, the state of the game is perfectly known by both players,
• for two players that alternate turns,

We can represent such a game as a complete game tree that describes every possible match.
Each possible state is a node in the tree, and since we only consider deterministic games, we
can represent actions as edges leading from the current state to the next. Each path through
the tree, from root to leaf, represents a single game.

(In games where one can return to a previous board state, to avoid introducing cycles, we
might modify the state by also including the number of moves that have been made. This
ensures that the complete game tree indeed has no cycles.)

If you could store the complete game tree on a computer, you would be able to win every
potentially winnable game by searching all paths from your current state and taking a winning
move. We will see an explicit algorithm for this in sec. 9.3. However, as games become more
complex, it becomes computationally impossible to search every possible path.

For instance, a chess player has roughly 30 actions to choose from at each turn, and each game
takes roughly 40 moves per player, so trying to solve chess exactly using minimax would take
somewhere on the order of 3080 ≈ 10118 operations. That’s 10 billion billion billion billion
billion billion billion billion billion billion billion billion billion operations. As of the time of
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Figure 9.1: The first two layers of the complete game tree of tic-tac-toe.
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writing, the fastest processor can achieve almost 10 GHz (10 billion operations per second), so
to fully solve chess using minimax is many, many orders of magnitude out of reach.

It is thus intractable, in any realistic setting, to solve the complete game tree exactly. Luckily,
only a small fraction of those games ever occur in reality. Later in this chapter, we will
explore ways to prune away parts of the tree that we know we can safely ignore. We can also
approximate the value of a state without fully evaluating it. Using these approximations, we
can no longer guarantee winning the game, but we can come up with strategies that will do
well against most opponents.

9.2.1 Notation

Let us now describe these games formally. We’ll call the first player Max and the second player
Min. Max seeks to maximize the final game score, while Min seeks to minimize the final game
score.

• We’ll use 𝒮 to denote the set of all possible game states.
• The game begins in some initial state 𝑠0 ∈ 𝒮.
• Max moves on even turn numbers ℎ = 2𝑛, and Min moves on odd turn numbers ℎ =

2𝑛 + 1, where 𝑛 is a natural number.
• The space of possible actions, 𝒜ℎ(𝑠), depends on the state itself, as well as whose turn

it is. (For example, in tic-tac-toe, Max can only play Xs while Min can only play Os.)
• The game ends after 𝐻 total moves (which might be even or odd). We call the final state

a terminal state.
• 𝑃 denotes the state transitions, that is, 𝑃(𝑠, 𝑎) denotes the resulting state when taking

action 𝑎 ∈ 𝒜(𝑠) in state 𝑠. We’ll assume that this function is time-homogeneous (a.k.a.
stationary) and doesn’t change across timesteps.

• 𝑟(𝑠) denotes the game score of the terminal state 𝑠. Note that this is some positive or
negative value seen by both players: A positive value indicates Max winning, a negative
value indicates Min winning, and a value of 0 indicates a tie.

We also call the sequence of states and actions a trajectory.

Exercise 9.1 (Variable length games). Above, we suppose that the game ends after 𝐻 total
moves. But most real games have a variable length. How would you describe this?

Example 9.1 (Tic-tac-toe). Let us frame tic-tac-toe in this setting.

• Each of the 9 squares is either empty, marked X, or marked O. So there are |𝒮| = 39

potential states. Not all of these may be reachable!
• The initial state 𝑠0 is the empty board.
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• The set of possible actions for Max in state 𝑠, 𝒜2𝑛(𝑠), is the set of tuples (“X”, 𝑖) where
𝑖 refers to an empty square in 𝑠. Similarly, 𝒜2𝑛+1(𝑠) is the set of tuples (“O”, 𝑖) where 𝑖
refers to an empty square in 𝑠.

• We can take 𝐻 = 9 as the longest possible game length.
• 𝑃(𝑠, 𝑎) for a nonterminal state 𝑠 is simply the board with the symbol and square specified

by 𝑎 marked into 𝑠. Otherwise, if 𝑠 is a terminal state, i.e. it already has three symbols
in a row, the state no longer changes.

• 𝑟(𝑠) at a terminal state is +1 if there are three Xs in a row, −1 if there are three Os in
a row, and 0 otherwise.

Our notation may remind you of Chapter 2. Given that these games also involve a sequence of
states and actions, can we formulate them as finite-horizon MDPs? The two settings are not
exactly analogous, since in MDPs we only consider a single policy, while these games involve
two distinct players with opposite objectives. Since we want to analyze the behaviour of both
players at the same time, describing such a game as an MDP is more trouble than it’s worth.

9.3 Min-max search

In the introduction, we claimed that we could win any potentially winnable game by looking
ahead and predicting the opponent’s actions. This would mean that each nonterminal state
already has some predetermined game score. That is, in each state, it is already possible to
determine which player is going to win.

Let 𝑉 ⋆
ℎ (𝑠) denote the game score under optimal play from both players starting in state 𝑠 at

time ℎ.

Definition 9.1 (Min-max search algorithm). The best move for Max is the one that leads
to the maximum value. Correspondingly, the best move for Min is the one that leads to the
minimum value. This naturally gives rise to a recursive definition of the value of each state
under optimal play:

𝑉 ⋆
ℎ (𝑠) =

⎧{
⎨{⎩

𝑟(𝑠) ℎ = 𝐻
max𝑎∈𝒜ℎ(𝑠) 𝑉 ⋆

ℎ+1(𝑃 (𝑠, 𝑎)) ℎ is even and ℎ < 𝐻
min𝑎∈𝒜ℎ(𝑠) 𝑉 ⋆

ℎ+1(𝑃 (𝑠, 𝑎)) ℎ is odd and ℎ < 𝐻
.

Recall that 𝑃(𝑠, 𝑎) denotes the next state after taking action 𝑎 in state 𝑠.

We can compute this by dynamic programming. We start at the terminal states, where the
game’s outcome is known, and work backwards. This might remind you of policy evaluation
in finite-horizon MDPs (sec. 2.3.1).
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This translates directly into a recursive depth-first search algorithm for searching the complete
game tree.

function minimax_search(𝑠, player)
if env.is_terminal(𝑠)

return (None, env.winner(𝑠))
end if
if player ≡ max

(𝑎max, 𝑣max) ← (None, None)
for 𝑎 ∈ 𝒜(𝑠) do

(_, 𝑣) ← minimax_search(𝑃 (𝑠, 𝑎) , min)
if 𝑣 > 𝑣max

(𝑎max, 𝑣max) ← (𝑎, 𝑣)
end if

end for
return (𝑎max, 𝑣max)

else
(𝑎min, 𝑣min) ← (None, None)
for 𝑎 ∈ 𝒜(𝑠) do

(_, 𝑣) ← minimax_search(𝑃 (𝑠, 𝑎) , max)
if 𝑣 < 𝑣min

(𝑎min, 𝑣min) ← (𝑎, 𝑣)
end if

end for
return (𝑎min, 𝑣min)

end if
end function

Example 9.2 (Min-max search for a simple game). Consider a simple game with just two
steps: Max chooses one of three possible actions (A, B, C), and then Min chooses one of three
possible actions (D, E, F). The combination leads to a certain integer outcome, shown in the
table below:

D E F
A 4 -2 5
B -3 3 1
C 0 3 -1

We can visualize this as the following complete game tree, where each box contains the value
𝑉 ⋆

ℎ (𝑠) of that node. The min-max values of the terminal states are already known:
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We begin min-max search at the root, exploring each of Max’s actions. Suppose Max chooses
action A. Then Min will choose action E to minimize the game score, making the value of this
game node min(4, −2, 5) = −2.

Similarly, if Max chooses action B, then Min will choose action D, and if Max chooses action
C, then Min will choose action F. We can fill in the values of these nodes accordingly:

Thus, Max’s best move is to take action C, resulting in a game score of max(−2, −3, −1) = −1.
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9.3.1 Complexity of min-max search

At each of the 𝐻 timesteps, this algorithm iterates through the entire action space at that state,
and therefore has a time complexity of 𝐻𝑛𝐴 (where 𝑛𝐴 is the largest number of actions possibly
available at once). This makes the min-max algorithm impractical for even moderately sized
games.

But do we need to compute the exact value of every possible state? Instead, is there some
way we could “ignore” certain actions and their subtrees if we already know of better options?
The alpha-beta search makes use of this intuition.

9.4 Alpha-beta pruning

For a given deterministic, zero-sum, fully observable two-player game (sec. 9.2), we have seen
that it is possible to “solve” the game, that is, determine the best move in every situation,
using min-max search (sec. 9.3). However, the time complexity of min-max search makes it
infeasible for most scenarios. Alpha-beta pruning improves min-max search by pruning down
the search tree.

Suppose Max is in state 𝑠 is deciding between action 𝑎 and 𝑎′. If at any point Max finds out
that action 𝑎′ is no better than action 𝑎, she doesn’t need to evaluate action 𝑎′ any further.

Concretely, we run min-max search as above, except now we keep track of two additional
parameters 𝛼(𝑠) and 𝛽(𝑠) while evaluating each state:

• Starting in state 𝑠, Max can achieve a game score of at least 𝛼(𝑠) assuming Min plays
optimally. That is, 𝑉 ⋆

ℎ (𝑠) ≥ 𝛼(𝑠) at all points.
• Analogously, starting in state 𝑠, Min can ensure a game score of at most 𝛽(𝑠) assuming

Max plays optimally. That is, 𝑉 ⋆
ℎ (𝑠) ≤ 𝛽(𝑠) at all points.
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Suppose we are evaluating 𝑉 ⋆
ℎ (𝑠), where it is Max’s turn (ℎ is even). We update 𝛼(𝑠) to be the

highest minimax value achievable from 𝑠 so far. That is, the value of 𝑠 is at least 𝛼(𝑠). Suppose
Max chooses action 𝑎, which leads to state 𝑠′, in which it is Min’s turn. If any of Min’s actions
in 𝑠′ achieve a value 𝑉 ⋆

ℎ+1(𝑠′) ≤ 𝛼(𝑠), we know that Max would not choose action 𝑎, since
they know that it is worse than whichever action gave the value 𝛼(𝑠). Similarly, to evaluate
a state on Min’s turn, we update 𝛽(𝑠) to be the lowest value achievable from 𝑠 so far. That
is, the value of 𝑠 is at most 𝛽(𝑠). Suppose Min chooses action 𝑎, which leads to state 𝑠′ for
Max. If Max has any actions that do better than 𝛽(𝑠), they would take it, making action 𝑎 a
suboptimal choice for Min.

Example 9.3 (Alpha-beta search for a simple game). Let us use the same simple game from
ex. 9.2. We list the values of 𝛼(𝑠), 𝛽(𝑠) in each node throughout the algorithm. These values
are initialized to −∞, +∞ respectively. We shade any squares that have not been visited by
the algorithm, and we assume that actions are evaluated from left to right.

Suppose Max takes action A. Let 𝑠′ be the resulting game state. The values of 𝛼(𝑠′) and 𝛽(𝑠′)
are initialized at the same values as the root state, since we want to prune a subtree if there
exists a better action at any step higher in the tree.

Then we iterate through Min’s possible actions, updating the value of 𝛽(𝑠′) as we go.
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Once the value of state 𝑠′ is fully evaluated, we know that Max can achieve a value of at least
−2 starting from the root, and so we update 𝛼(𝑠), where 𝑠 is the root state:

Then Max imagines taking action B. Again, let 𝑠′ denote the resulting game state. We initialize
𝛼(𝑠′) and 𝛽(𝑠′) from the root:
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Now suppose Min takes action D, resulting in a value of −3. We see that 𝑉 ⋆
ℎ (𝑠′) = min(−3, 𝑥, 𝑦),

where 𝑥 and 𝑦 are the values of the remaining two actions. But since min(−3, 𝑥, 𝑦) ≤ −3, we
know that the value of 𝑠′ is at most −3. But Max can achieve a better value of 𝛼(𝑠′) = −2
by taking action A, and so Max will never take action B, and we can prune the search here.
We will use dotted lines to indicate states that have been ruled out from the search:

Finally, suppose Max takes action C. For Min’s actions D and E, there is still a chance that
action C might outperform action A, so we continue expanding:

Finally, we see that Min taking action F achieves the minimum value at this state. This shows
that optimal play is for Max to take action C, and Min to take action F.
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function alpha_beta_search(𝑠, player, 𝛼, 𝛽)
if env.is_terminal(𝑠)

return (None, env.winner(𝑠))
end if
if player ≡ max

(𝑎max, 𝑣max) ← (None, None)
for 𝑎 ∈ actions do

(_, 𝑣) ← minimax_search(env.step(𝑠, 𝑎) , min, 𝛼, 𝛽)
if 𝑣 > 𝑣max

(𝑎max, 𝑣max) ← (𝑎, 𝑣)
𝛼 ← max(𝛼, 𝑣)

end if
if 𝑣max ≥ 𝛽

return (𝑎max, 𝑣max)
end if

end for
return (𝑎max, 𝑣max)

else
(𝑎min, 𝑣min) ← (None, None)
for 𝑎 ∈ actions do

(_, 𝑣) ← minimax_search(env.step(𝑠, 𝑎) , max)
if 𝑣 < 𝑣min

(𝑎min, 𝑣min) ← (𝑎, 𝑣)
𝛽 ← min(𝛽, 𝑣)

end if
if 𝑣min ≤ 𝛼

return (𝑎min, 𝑣min)
end if

end for
return (𝑎min, 𝑣min)

end if
end function
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How do we choose what order to explore the branches? As you can tell, this significantly
affects the efficiency of the pruning algorithm. If Max explores the possible actions in order
from worst to best, they will not be able to prune any branches at all! Additionally, to verify
that an action is suboptimal, we must run the search recursively from that action, which
ultimately requires traversing the tree all the way to a leaf node. The longer the game might
possibly last, the more computation we have to run.

In practice, we can often use background information about the game to develop a heuristic
for evaluating possible actions. If a technique is based on background information or intuition,
especially if it isn’t rigorously justified, we call it a heuristic.

Can we develop heuristic methods for tree exploration that works for all sorts of games?

9.5 Monte Carlo Tree Search

The task of evaluating actions in a complex environment might seem familiar. We’ve en-
countered this problem before in both multi-armed bandits (Chapter 4) and Markov decision
processes (Chapter 2). Now we’ll see how to combine concepts from these to form a more
general and efficient tree search heuristic called Monte Carlo Tree Search (MCTS).

When a problem is intractable to solve exactly, we often turn to approximate algorithms that
sacrifice some accuracy in exchange for computational efficiency. MCTS also improves on
alpha-beta search in this sense. As the name suggests, MCTS uses Monte Carlo simulation,
that is, collecting random samples and computing the sample statistics, in order to approximate
the value of each action.

As before, we imagine a game tree in which each path represents an entire game. MCTS
assigns values to only the game states that are relevant to the current game. That is, we
maintain a search tree that we gradually expand at each move. For comparison, in alpha-beta
search, the entire tree only needs to be solved once, and from then on, choosing an action is
as simple as taking a maximum over the previously computed values.

The crux of MCTS is approximating the win probability of a state by a sample probability. In
practice, MCTS is used for games with binary outcomes where 𝑟(𝑠) ∈ {+1, −1}, and so this
is equivalent to approximating the final game score. To approximate the win probability from
state 𝑠, MCTS samples random games starting in 𝑠 and computes the sample proportion of
those that the player wins.

Note that, for a given state 𝑠, choosing the best action 𝑎 can be framed as a multi-armed
bandit problem, where each action corresponds to an arm, and the reward distribution of
arm 𝑘 is the distribution of the game score over random games after choosing that arm. The
most commonly used bandit algorithm in practice for MCTS is the upper confidence bound
algorithm (sec. 4.7).
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Remark 9.1 (Summary of UCB). Let us quickly review the UCB algorithm for a multi-armed
bandit problem (sec. 4.7) For each arm 𝑘, we track the sample mean

̂𝜇𝑘
𝑡 = 1

𝑁𝑘
𝑡

𝑡−1
∑
𝜏=0

1 {𝑎𝜏 = 𝑘} 𝑟𝜏

of all rewards from that arm up to time 𝑡. Then we construct a confidence interval

𝐶𝑘
𝑡 = [ ̂𝜇𝑘

𝑡 − 𝐵𝑘
𝑡 , ̂𝜇𝑘

𝑡 + 𝐵𝑘
𝑡 ],

where 𝐵𝑘
𝑡 = √ ln(2𝑡/𝛿)

2𝑁𝑘
𝑡

is given by Hoeffding’s inequality, so that with probability 𝛿 (some fixed
parameter we choose), the true mean 𝜇𝑘 lies within 𝐶𝑘

𝑡 . Note that 𝐵𝑘
𝑡 scales like √1/𝑁𝑘

𝑡 ,
i.e. the more we have visited that arm, the more confident we get about it, and the narrower
the confidence interval.

To select an arm, we pick the arm with the highest upper confidence bound.

This means that, for each edge in the game tree, which corresponds to a state-action pair (𝑠, 𝑎),
we keep track of the statistics required to compute its UCB:

• How many times it has been “visited” (𝑁𝑠,𝑎
𝑡 )

• How many of those visits resulted in victory (∑𝑡−1
𝜏=0 1 {(𝑠𝜏 , 𝑎𝜏) = (𝑠, 𝑎)} 𝑟𝜏). Let us call

this latter value 𝑊 𝑠,𝑎
𝑡 (for number of “wins”).

What does 𝑡 refer to in the above expressions? Recall 𝑡 refers to the number of time steps
elapsed in the bandit environment. As mentioned above, each state 𝑠 corresponds to its own
bandit environment, and so 𝑡 refers to 𝑁𝑠, that is, how many actions have been taken from
state 𝑠. This term, 𝑁𝑠, gets incremented as the algorithm runs; for simplicity, we won’t
introduce another index to track how it changes.

Definition 9.2 (Monte Carlo tree search algorithm). Here we describe how to perform a
Monte Carlo tree search for choosing a single action in state 𝑠start.

Inputs:

• 𝑇 , the number of iterations per move
• 𝜋rollout, the rollout policy for randomly sampling games
• 𝑐, a positive value that encourages exploration

To choose a single move starting at state 𝑠start, MCTS first tries to estimate the UCB values
for each of the possible actions 𝒜(𝑠start), and then chooses the best one. To estimate the UCB
values, it repeats the following four steps 𝑇 times:

1. Selection: We start at 𝑠 = 𝑠start. Let 𝜏 be an empty list that we will use to track states
and actions.
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• Choose 𝑎 ← arg max𝑘 UCB𝑠,𝑘, where

UCB𝑠,𝑎 = 𝑊 𝑠,𝑎

𝑁𝑠,𝑎 + 𝑐√ ln 𝑁𝑠

𝑁𝑠,𝑎 (9.1)

• Append (𝑠, 𝑎) to 𝜏
• If 𝑠 has at least one action that hasn’t been taken, move onto the next step. Oth-

erwise, move to the next state 𝑠 ← 𝑃(𝑠, 𝑎) and repeat.

2. Expansion: Let 𝑠new denote the final state in 𝜏 (that has at least one action that hasn’t
been taken). Choose one of these unexplored actions from 𝑠new. Call it 𝑎new. Add it to
𝜏 .

3. Simulation: Simulate a complete game episode by starting with the action 𝑎new and
then playing according to 𝜋rollout. This results in the outcome 𝑟 ∈ {+1, −1}.

4. Backup: For each (𝑠, 𝑎) ∈ 𝜏 :

• Set 𝑁𝑠,𝑎 ← 𝑁𝑠,𝑎 + 1
• 𝑊 𝑠,𝑎 ← 𝑊 𝑠,𝑎 + 𝑟
• Set 𝑁𝑠 ← 𝑁𝑠 + 1

After 𝑇 repeats of the above, we return the action with the highest UCB value eq. 9.1. Then
play continues.

Between turns, we can keep the subtree whose statistics we have visited so far. However, the
rest of the tree for the actions we did not end up taking gets discarded.

The application which brought the MCTS algorithm to fame was DeepMind’s AlphaGo Silver
et al. (2016). Since then, it has been used in numerous applications ranging from games to
automated theorem proving.

How accurate is this Monte Carlo estimation? It depends heavily on the rollout policy 𝜋rollout.
If the distribution 𝜋rollout induces over games is very different from the distribution seen during
real gameplay, we might end up with a poor value approximation.

9.5.1 Incorporating value functions and policies

To remedy this, we might make use of a value function 𝑣 ∶ 𝒮 → ℝ that more efficiently
approximates the value of a state. Then, we can replace the simulation step of def. 9.2 with
evaluating 𝑟 = 𝑣(𝑠 − next), where 𝑠next = 𝑃(𝑠new, 𝑎new).
We might also make use of a “guiding” policy 𝜋guide ∶ 𝒮 → △(𝒜) that provides “intuition”
as to which actions are more valuable in a given state. We can scale the exploration term of
eq. 9.1 according to the policy’s outputs.

Putting these together, we can describe an updated version of MCTS that makes use of these
value functions and policy:
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Definition 9.3 (Monte Carlo tree search with policy and value functions). Inputs: - 𝑇 , the
number of iterations per move - 𝑣, a value function that evaluates how good a state is - 𝜋guide, a
guiding policy that encourages certain actions - 𝑐, a positive value that encourages exploration

To select a move in state 𝑠start, we repeat the following four steps 𝑇 times:

1. Selection: We start at 𝑠 = 𝑠start. Let 𝜏 be an empty list that we will use to track states
and actions.

• Until 𝑠 has at least one action that hasn’t been taken:
– Choose 𝑎 ← arg max𝑘 UCB𝑠,𝑘, where

UCB𝑠,𝑎 = 𝑊 𝑠,𝑎

𝑁𝑠 + 𝑐 ⋅ 𝜋guide(𝑎 ∣ 𝑠)√ ln 𝑁𝑠

𝑁𝑠,𝑎 (9.2)

– Append (𝑠, 𝑎) to 𝜏
– Set 𝑠 ← 𝑃(𝑠, 𝑎)

2. Expansion: Let 𝑠new denote the final state in 𝜏 (that has at least one action that hasn’t
been taken). Choose one of these unexplored actions from 𝑠new. Call it 𝑎new. Add it to
𝜏 .

3. Simulation: Let 𝑠next = 𝑃(𝑠new, 𝑎new). Evaluate 𝑟 = 𝑣(𝑠next). This approximates the
value of the game after taking the action 𝑎new.

4. Backup: For each (𝑠, 𝑎) ∈ 𝜏 :

• 𝑁𝑠,𝑎 ← 𝑁𝑠,𝑎 + 1
• 𝑊 𝑠,𝑎 ← 𝑊 𝑠,𝑎 + 𝑟
• 𝑁𝑠 ← 𝑁𝑠 + 1

We finally return the action with the highest UCB value eq. 9.2. Then play continues. As
before, we can reuse the tree across timesteps.

How do we actually compute a useful 𝜋guide and 𝑣? If we have some existing dataset of
trajectories, we could use Chapter 8 (that is, imitation learning) to generate a policy 𝜋guide via
behaviour cloning and learn 𝑣 by regressing the game outcomes onto states. Then, plugging
these into def. 9.3 results in a stronger policy by using tree search to “think ahead”.

But we don’t have to stop at just one improvement step; we could iterate this process via
self-play.

9.5.2 Self-play

Recall the policy iteration algorithm for solving an MDP (sec. 2.4.4.2). Policy iteration alter-
nates between policy evaluation (taking 𝜋 and computing 𝑉 𝜋) and policy improvement
(setting 𝜋 to be greedy with respect to 𝑉 𝜋). We can think of MCTS as a “policy improvement”
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operation: for a given policy 𝜋0, we can use it to guide MCTS. This results in an algorithm
that is itself a policy that maps from states to actions. This improved policy (using MCTS)
is usually called the search policy. Denote it by 𝜋0

MCTS. Now, we can use imitation learning
techniques (Chapter 8) to obtain a new policy 𝜋1 that imitates 𝜋0

MCTS. We can now use 𝜋1 to
guide MCTS, and repeat.

Definition 9.4 (MCTS with self-play). Input:

• A parameterized policy class 𝜋𝜃 ∶ 𝒮 → △(𝒜)
• A parameterized value function class 𝑣𝜆 ∶ 𝒮 → ℝ
• A number of trajectories 𝑀 to generate
• The initial parameters 𝜃0, 𝜆0

For 𝑡 = 0, … , 𝑇 − 1:

• Policy improvement: Let 𝜋𝑡
MCTS denote the policy obtained by def. 9.3 with 𝜋𝜃𝑡 and

𝑣 − 𝜆𝑡. We use 𝜋𝑡 − MCTS to play against itself 𝑀 times. This generates 𝑀 trajectories
𝜏 − 0, … , 𝜏 − 𝑀 − 1.

• Policy evaluation: Use behaviour cloning to find a set of policy parameters 𝜃𝑡+1 that
mimic the behaviour of 𝜋𝑡

MCTS and a set of value function parameters 𝜆𝑡+1 that approx-
imate its value function. That is,

𝜃𝑡+1 ← arg min
𝜃

𝑀−1
∑
𝑚=0

𝐻−1
∑
ℎ=0

− log 𝜋𝜃(𝑎𝑚
ℎ ∣ 𝑠𝑚

ℎ )

𝜆𝑡+1 ← arg min
𝜆

𝑀−1
∑
𝑚=0

𝐻−1
∑
ℎ=0

(𝑣𝜆(𝑠𝑚
ℎ ) − 𝑅(𝜏𝑚))2

Note that in implementation, the policy and value are typically both returned by a single deep
neural network, that is, with a single set of parameters, and the two loss functions are added
together.

This algorithm was brought to fame by AlphaGo Zero (Silver et al., 2017).

9.5.2.1 Extending to continuous rewards (*)

In the search algorithm above, we used 𝑊 𝑠,𝑎 to track the number of times the policy wins
after taking action 𝑎 in state 𝑠. This binary outcome can easily be generalized to a continuous
reward at each state-action pair. This is the reward function we assumed when discussing
MDPs (Chapter 2).
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9.6 Key takeaways

In this chapter, we explored tree search-based algorithms for deterministic, zero sum, fully
observable two-player games. We began with min-max search (sec. 9.3), an algorithm for
exactly solving the game value of every possible state. However, this is impossible to execute
in practice, and so we must resort to various ways to reduce the number of states and actions
that we must explore. Alpha-beta search (sec. 9.4) does this by pruning away states that we
already know to be suboptimal, and MCTS (sec. 9.5) approximates the value of states instead
of evaluating them exactly.

9.7 Bibliographic notes and further reading

S. J. Russell & Norvig (2021, ch. 5) provides an excellent overview of search methods in
games. The original AlphaGo paper Silver et al. (2016) was a groundbreaking application
of these technologies. Silver et al. (2017) removed the imitation learning phase, learning the
optimal policy from scratch using self-play. AlphaZero (Silver et al., 2018) then extended
to other games beyond Go, namely shogi and chess, also learning from scratch. In MuZero
(Schrittwieser et al., 2020), this was further extended by learning a model of the game dynamics.
EfficientZero (Ye et al., 2021) presented a more sample-efficient algorithm based on MuZero.
Gumbel MuZero (Danihelka et al., 2021) greatly improved the computational efficiency of
MuZero by reducing the number of rollouts required. Stochastic MuZero (Antonoglou et al.,
2021) extends MuZero to stochastic environments.

While search methods are extremely powerful, they are also computationally intensive, and
have therefore historically been written in lower-level languages such as C or C++ rather than
Python. The development of the JAX framework addresses this issue by providing a readable
high-level Python library that compiles to code optimized for specific hardware. In particular,
the Mctx library (Babuschkin et al., 2020) provides usable implementations of MuZero and its
variants above.
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10 Exploration in MDPs

10.1 Introduction

One of the key challenges of reinforcement learning is the exploration-exploitation tradeoff.
Should we exploit actions we know will give high reward, or should we explore different actions
to discover potentially better strategies? An algorithm that doesn’t explore effectively might
easily overfit to certain areas of the state space, and fail to generalize once they enter a region
they haven’t yet seen.

In the multi-armed bandit setting (Chapter 4), we studied the upper confidence bound (UCB)
algorithm (sec. 4.7) that incentivizes the learner to explore arms that it is uncertain about. In
particular, UCB relies on optimism in the face of uncertainty: it chooses arms based on
an overestimate of the arm’s true mean reward. In this chapter, we will see how to generalize
this idea to the MDP setting.

10.1.1 Sparse reward

Exploration is crucial in sparse reward problems where 𝑟(𝑠, 𝑎) = 0 for most (or nearly all)
states and actions. Often, the agent must take a specific sequence of actions before any reward
is observed.

Example 10.1 (Chain MDP). Here’s a simple example of an MDP with sparse rewards:

Figure 10.1: An illustration of the chain MDP environment.

There are |𝒮| cells arranged in a chain. The agent starts in the leftmost cell. The rightmost
state is a terminal state. In every state, there are three possible actions, two of which move
the agent left and one which moves the agent right. (The two “left” actions do nothing in the
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leftmost cell.) The reward function gives a reward of 1 for taking the action that enters the
rightmost cell, and zero otherwise.

The problem of sparse rewards is especially prevalent in RL compared to supervised learning.
In most supervised learning tasks, every labelled sample provides some useful signal. However,
in RL, algorithms that don’t systematically explore new states may fail to learn anything
meaningful within a reasonable amount of time.

Consider the algorithms we’ve covered so far for unknown environments: policy gradient meth-
ods (Chapter 7) and fitted DP methods (Chapter 6). How would these do on this problem?

Remark 10.1 (Policy gradient methods fail on sparse reward). Policy gradient algorithms
require the gradient to be nonzero in order to learn. If we never observe any reward, the
gradient will always be zero, and the policy will never change or improve. If we think of the
expected total reward as a function 𝐽(𝜃) of the policy parameters, we can visualize the graph
of 𝐽 as being mostly flat, making it impossible to “climb the hill” from almost every random
initialization.

Remark 10.2 (Fitted DP methods fail on sparse reward). Fitted DP algorithms run into a
similar issue: as we randomly interact with the environment, we never observe any reward,
and so the reward model simply gives zero for every state-action pair. In expectation, it would
take a computationally infeasible number of rollouts to observe the reward by chance.

This is quite disheartening! The sophisticated methods we’ve developed, which can exceed
human-level performance on a wide variety of tasks, fail on this problem that seems almost
trivial.

Of course, a simple way to solve the “chain MDP” in ex. 10.1 is to actively visit unseen states.
For a policy that visits a new state in each rollout, the final cell can be reached in 𝑂(|𝒮|)
rollouts (i.e. 𝑂(|𝒮|2) time). The rest of this chapter will consider ways to explicitly explore
unknown states.

10.1.2 Reward shaping

One workaround to sparse reward problems in practice is to shape the reward function using
domain knowledge. For example, in ex. 10.1, we (that is, the practitioners) know that travelling
to the right is the correct action, so we could design a reward function that provides a reward
of 0.1 for the action that moves to the right. A similar strategy is used in practice for many
chess or board game algorithms where capturing the opponent’s pieces earns some positive
reward.

Though this might seem obvious, designing a useful reward function can be challenging in
practice. The agent may learn to exploit the intermediate rewards rather than solve the
original goal. A famous example is the agent trained to play the CoastRunners game, in
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which players race boats around a racetrack. However, the algorithm found that it could
achieve higher reward (i.e. in-game score) by refusing to go around the racetrack and instead
collecting bonus points in a loop!

Figure 10.2: An RL agent collects bonus points instead of participating in the race. Image
from Clark & Amodei (2024).

This phenomenon is known as reward hacking or Goodhart’s law. Reward hacking is
essentially a special case of “finding loopholes” around the written guidelines (or in this case,
the reward signal used for training); think of folk stories such as King Midas or the Monkey’s
Paw. When RL algorithms are deployed in high-stakes scenarios, it is crucial to verify the
learned policy’s behaviour and ensure that it is aligned to the designer’s intentions.

10.2 Exploration in deterministic MDPs

Let us address the exploration problem in a deterministic MDP, that is, where taking action
𝑎 in state 𝑠 always leads to the state 𝑃(𝑠, 𝑎) ∈ 𝒮. How can we methodically visit every single
state-action pair?
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In the multi-armed bandit setting (Chapter 4), there are no states, so it’s trivial to visit every
“state-action pair”: just pull each arm once. But in the MDP setting, in order to achieve a
particular state-action pair (𝑠, 𝑎), one must plan out a path from the initial state.

We can do this by constructing an MDP where only unseen state-action pairs are rewarded,
and using value iteration/dynamic programming (sec. 2.3.2) to reach the unknown states in
𝑀𝒟. Concretely, we keep a set 𝒟 of all the (𝑠, 𝑎, 𝑟, 𝑠′) tuples we’ve observed. Each episode,
we use 𝒟 to construct a fully known MDP, 𝑀𝒟, in which only unseen state-action pairs are
rewarded.

Definition 10.1 (Explore-then-exploit algorithm). Suppose that every state can be reached
from the initial state within a single episode.

1. 𝒟 ← ∅
2. For 𝑇 = 0, 1, 2, … (until the entire MDP has been explored):

1. Construct 𝑀𝒟 using 𝒟. That is, the state transitions are set to those observed in
𝒟, and the reward is set to 0 for all state-action pairs in 𝒟, and 1 otherwise.

2. Execute DP (sec. 2.3.2) on the known MDP 𝑀𝒟 to compute the optimal policy 𝜋⋆
𝒟.

3. Execute 𝜋⋆
𝒟 in 𝑀𝒟. This will visit some (𝑠, 𝑎) not yet in 𝒟, and observe the reward

𝑟(𝑠, 𝑎) and next state 𝑃(𝑠, 𝑎).
4. 𝒟 ← 𝒟 ∪ {(𝑠, 𝑎, 𝑟, 𝑠′)}, where 𝑠′ = 𝑃(𝑠, 𝑎), 𝑟 = 𝑟(𝑠, 𝑎) are the observed state

transition and reward.

Remark 10.3 (Path planning is graph traversal). Review the dynamic programming algorithm
for a finite-horizon MDP (sec. 2.3.2). Note that in the constructed MDP 𝑀𝒟, this is identical
to a breadth-first search beginning from the desired state at the final timestep: each state-
timestep pair is a node in the graph, and the state transitions determine the (directed) edges.
Each state-timestep pair from which it is possible to reach the desired state is assigned a value
of 1. The policy serves to backtrack through these state-timestep pairs, returning to the root
node of the search: the desired state.

We can easily measure the per-episode regret of this algorithm.

Definition 10.2 (Per-episode regret). We aim to evaluate some iterative policy optimization
algorithm. Let 𝜋𝑡 be the policy returned by the algorithm after 𝑡 iterations. The per-episode
regret across 𝑇 iterations is given by

Regret𝑇 = 𝔼
𝑠0∼𝑃0

[
𝑇 −1
∑
𝑡=0

𝑉 ⋆
0 (𝑠0) − 𝑉 𝜋𝑡

0 (𝑠0)] (10.1)

where the randomness is in the initial state distribution.
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Remark 10.4 (MDP policies as MAB arms). What does this have to do with the definition of
regret in the MAB setting (def. 4.3)? Here, policies are arms, and the “mean reward” is the
expected total reward of a trajectory. We’ll make this connection more explicit in sec. 10.3.

Theorem 10.1 (Performance of explore-then-exploit). The regret of the explore-then-exploit
algorithm (def. 10.1) can be upper-bounded by

𝑇 −1
∑
𝑡=0

𝑉 ⋆
0 − 𝑉 𝜋𝑡

0 ≤ |𝒮||𝒜|𝐻. (10.2)

(This MDP and algorithm are deterministic, assuming there is a single starting state, so the
regret is not random.)

Proof. As long as every state can be reached from 𝑠0 within a single episode, i.e. |𝒮| ≤ 𝐻,
def. 10.2 will eventually be able to explore all |𝒮||𝒜| state-action pairs, adding one new tran-
sition per episode.

Let 𝑀 denote the original MDP that we aim to solve. We know it will take at most |𝒮||𝒜|
iterations to explore the entire MDP, after which 𝑀𝒟 = 𝑀 and 𝜋⋆

𝒟 is the optimal policy in
𝑀 , incurring no additional regret. For each “shortest-path” policy 𝜋⋆

𝒟 up until then, its value
will differ from that of 𝜋⋆ by at most 𝐻, since the policies will differ by at most 1 reward at
each timestep.

10.3 Treating an unknown MDP as a MAB

We explored the exploration-exploitation tradeoff in the multi-armed bandits setting (Chap-
ter 4). Can we apply the MAB algorithms we discovered to MDPs as well? Let us formally
describe an unknown MDP as an MAB problem.

In a MAB problem, we want to find the arm with the highest mean reward. In an MDP, we
want to find the policy that achieves the highest expected total reward. So if we want to apply
MAB techniques to solving an MDP, it makes sense to draw an equivalence between arms and
policies. We can summarize this equivalence in the following table:

Table 10.1: Treating an MDP with finite states and actions as a MAB.

MAB MDP
𝐾 arms (|𝒜||𝒮|)𝐻 deterministic policies
unknown reward
distributions 𝜈𝑘

unknown trajectory distributions 𝜌𝜋

𝑘⋆ = arg max𝑘∈[𝐾] 𝔼𝑟∼𝜈𝑘 [𝑟] 𝜋⋆ = arg max𝜋∈Π 𝔼𝜏∼𝜌𝜋 [∑𝐻−1
ℎ=0 𝑟(𝑠ℎ, 𝑎ℎ)]
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MAB MDP
pull arm 𝑘 and observe
reward

roll out with 𝜋 and observe total reward

(For the sake of this example, assume that the MDP’s reward function is stochastic, so that
the MAB reward distributions are nondegenerate.)

Recall that UCB incurs regret 𝑂(
√

𝑇 𝐾), where 𝑇 is the number of pulls and 𝐾 is the number
of arms. So in the MDP-as-MAB problem, using UCB for 𝑇 episodes would achieve regret

𝑂 (√|𝒜||𝒮|𝐻𝑇 ) (10.3)

This scales exponentially in |𝒮| and 𝐻, which quickly becomes intractable. Notably, this
method treats each policy as entirely independent from the others, but the performance of
different policies are typically correlated. We can illustrate this with the following example:

Example 10.2 (Treating an MDP as a MAB). Consider a “coin MDP” with two states “heads”
and “tails”, two actions “Y” and “N”, and a time horizon of 𝐻 = 2. The state transition flips
the coin, and doesn’t depend on the action. The reward only depends on the action: Taking
action Y gives reward 1, and taking action N gives reward 0.

Suppose we collect data from the two constant policies 𝜋Y(𝑠) = Y and 𝜋N(𝑠) = N. Now we
want to learn about the policy ̃𝜋 that takes action Y and then N. Do we need to collect data
from ̃𝜋 to evaluate it? No: Since the reward only depends on the action, we can infer its value
from our data on the policies 𝜋Y and 𝜋N. However, if we treat the MDP as a bandit in which

̃𝜋 is a new, unknown arm, we ignore the known correlation between the action and the reward.

10.4 Upper confidence bound value iteration

We shouldn’t need to consider all |𝒜||𝒮|𝐻 deterministic policies to achieve low regret. Rather,
all we need to describe the optimal policy is 𝑄⋆, which has 𝐻|𝒮||𝒜| entries to be learned. In
this section, we’ll study the upper confidence bound value iteration (UCBVI) algorithm (Azar
et al., 2017), which indeed achieves polynomial regret in |𝒮|, |𝒜|, and 𝐻.

As its name suggests, UCBVI combines the upper confidence bound (UCB) algorithm from
the multi-armed bandits setting (sec. 4.7) with value iteration (VI) from the MDP setting
(sec. 2.3.2):

• UCB strikes a good exploration-exploitation tradeoff in an (unknown) MAB;
• VI (what we simply call DP in the finite-horizon setting) computes the optimal value

function in a known MDP (with finite states and actions).
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Let us briefly review these two algorithms:

Remark 10.5 (Review of UCB). At each iteration 𝑡, for each arm 𝑘, we construct a confidence
interval for the mean of arm 𝑘’s reward distribution. We then choose the arm with the highest
upper confidence bound:

𝑘𝑡+1 ← arg max
𝑘∈[𝐾]

ucb𝑘
𝑡

where ucb𝑘
𝑡 = 𝑅𝑘

𝑡
𝑁𝑘

𝑡
+ √ ln(2𝑡/𝛿)

2𝑁𝑘
𝑡

(10.4)

where 𝑁𝑘
𝑡 indicates the number of times arm 𝑘 has been pulled up until time 𝑡, 𝑅𝑘

𝑡 indicates
the total reward obtained by pulling arm 𝑘 up until time 𝑡, and 𝛿 > 0 controls the width of
the confidence interval.

We can treat the upper confidence bound as a “proxy reward” that is the estimated mean
reward plus a bonus exploration term. Since the size of the bonus term is proportional to
our uncertainty (i.e. predicted variance) about that arm’s mean, this is called an optimistic
bonus. In UCBVI, we will extend this idea to the case of an unknown MDP ℳ by adding an
exploration term to the reward function. Then, we will use DP to solve for the optimal policy
in ℳ̃.

Remark 10.6 (Review of VI/DP). Value iteration (VI) is a dynamic programming (DP) al-
gorithm for computing the optimal policy and value function in an MDP where the state
transitions and reward function are known. We begin at the final timestep, where 𝑉 ⋆

𝐻(𝑠) = 0,
and work backwards using Bellman’s optimality equations (Theorem 2.5):

For ℎ = 𝐻 − 1, … , 0:

𝑄⋆
ℎ(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝔼

𝑠′∼𝑃(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)]

𝜋⋆
ℎ(𝑠) = arg max

𝑎∈𝒜
𝑄⋆

ℎ(𝑠, 𝑎)

𝑉 ⋆
ℎ (𝑠) = 𝑄⋆

ℎ(𝑠, 𝜋⋆
ℎ(𝑠)).

(10.5)

Assumptions: We will consider the general case of a time-varying MDP where the transition
and reward functions may change over time. Recall our convention that 𝑃ℎ is the distribution
of 𝑠ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ and 𝑟ℎ is applied to 𝑠ℎ, 𝑎ℎ.

Definition 10.3 (UCBVI). At a high level, the UCBVI algorithm can be described as follows:
For 𝑖 = 0, … , 𝐼 − 1:

1. Modeling: Use previously collected data to model the state transitions 𝑃0, … , 𝑃𝐻−1
and reward functions ̂𝑟0, … , ̂𝑟𝐻−1.
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2. Reward bonus: Design a reward bonus 𝑏ℎ(𝑠, 𝑎) ∈ ℝ to encourage exploration, analogous
to the UCB term.

3. Optimistic planning: Use VI (i.e. DP) to compute the optimal policy ̂𝜋 in the modelled
MDP

ℳ̃ = (𝒮, 𝒜, {𝑃ℎ}ℎ∈[𝐻], { ̂𝑟ℎ + 𝑏ℎ}ℎ∈[𝐻], 𝐻).

4. Execution: Use ̂𝜋 to collect a new trajectory.

We detail each of these steps below.

10.4.1 Modeling the transitions

Recall that we don’t know the state transitions or reward function of the MDP we aim to solve.
We seek to approximate

𝑃ℎ(𝑠ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ) = ℙ(𝑠ℎ, 𝑎ℎ, 𝑠ℎ+1)
ℙ(𝑠ℎ, 𝑎ℎ) , (10.6)

where ℙ denotes the true joint probabilities. We can estimate these using their sample proba-
bilities across a set of collected transitions. That is, define

𝑁 𝑖
ℎ(𝑠, 𝑎, 𝑠′) ∶=

𝑖−1
∑
𝑖′=0

1 {(𝑠𝑖′
ℎ , 𝑎𝑖′

ℎ , 𝑠𝑖′
ℎ+1) = (𝑠, 𝑎, 𝑠′)}

𝑁 𝑖
ℎ(𝑠, 𝑎) ∶=

𝑖−1
∑
𝑖′=0

1 {(𝑠𝑖′
ℎ , 𝑎𝑖′

ℎ ) = (𝑠, 𝑎)}
(10.7)

to be the number of times the tuple 𝑠, 𝑎, 𝑠′ appears in the collected data, and similar for the
state-action pair 𝑠, 𝑎. Then we can model

𝑃 𝑡
ℎ(𝑠′ ∣ 𝑠, 𝑎) = 𝑁 𝑡

ℎ(𝑠, 𝑎, 𝑠′)
𝑁 𝑡

ℎ(𝑠, 𝑎) . (10.8)

Similarly, we can model the rewards by the sample mean in each state-action pair:

̂𝑟𝑡
ℎ(𝑠, 𝑎) = 𝑁 𝑡

ℎ(𝑠, 𝑎)
∑

𝑡−1

𝑡′=0
1 {(𝑠𝑖

ℎ, 𝑎𝑖
ℎ) = (𝑠, 𝑎)} 𝑟𝑖

ℎ. (10.9)

This is a fairly naive, nonparametric estimator that doesn’t assume any underlying structure of
the MDP. We’ll see how to incorporate assumptions about the MDP in the following section.
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10.4.2 Reward bonus

To motivate the reward bonus term, recall how we designed the reward bonus term for UCB
(sec. 4.7):

1. We used Hoeffding’s inequality to bound, with high probability, how far the sample mean
̂𝜇𝑘
𝑡 deviated from the true mean 𝜇𝑘.

2. By inverting this inequality, we obtained a (1 − 𝛿)-confidence interval for the true mean,
centered at our estimate.

3. To make this bound uniform across all timesteps 𝑡 ∈ [𝑇 ], we applied the union bound
and multiplied 𝛿 by a factor of 𝑇 .

We’d like to do the same for UCBVI, and construct the bonus term such that 𝑉 ⋆
ℎ (𝑠) ≤ 𝑉 𝑡

ℎ(𝑠)
with high probability. However, our construction will be more complex than the MAB case,
since 𝑉 𝑡

ℎ(𝑠) depends on the bonus 𝑏𝑡
ℎ(𝑠, 𝑎) implicitly via DP. We claim that the bonus term

that gives the proper bound is

𝑏𝑖
ℎ(𝑠, 𝑎) = 2𝐻√ log(|𝒮||𝒜|𝐻𝐼/𝛿)

𝑁 𝑡
ℎ(𝑠, 𝑎) . (10.10)

We provide a heuristic sketch of the proof in sec. B.2; see A. Agarwal et al. (2022), Section
7.3 for a full proof.

10.4.3 Performance of UCBVI

How exactly does UCBVI strike a good balance between exploration and exploitation? In
UCB for MABs, the bonus exploration term is simple to interpret: It encourages the learner
to take actions with a high exploration term. Here, the policy depends on the bonus term
indirectly: The policy is obtained by planning in an MDP where the bonus term is added to
the reward function. Note that the bonuses propagate backwards in DP, effectively enabling
the learner to plan to explore unknown states. This effect takes some further interpretation.

Recall we constructed 𝑏𝑡
ℎ so that, with high probability, 𝑉 ⋆

ℎ (𝑠) ≤ 𝑉 𝑡
ℎ(𝑠) and so

𝑉 ⋆
ℎ (𝑠) − 𝑉 𝜋𝑡

ℎ (𝑠) ≤ 𝑉 𝑡
ℎ(𝑠) − 𝑉 𝜋𝑡

ℎ (𝑠).

That is, the l.h.s. measures how suboptimal policy 𝜋𝑡 is in the true environment, while the
r.h.s. is the difference in the policy’s value when acting in the modelled MDP ℳ̃𝑡 instead of
the true one ℳ.

If the r.h.s. is small, this implies that the l.h.s. difference is also small, i.e. that 𝜋𝑡 is exploiting
actions that are giving high reward.
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If the r.h.s. is large, then we have overestimated the value: 𝜋𝑡, the optimal policy of ℳ̃𝑡, does
not perform well in the true environment ℳ. This indicates that one of the 𝑏𝑡

ℎ(𝑠, 𝑎) terms
must be large, or some 𝑃 𝑡

ℎ(⋅ ∣ 𝑠, 𝑎) must be inaccurate, indicating a state-action pair with a
low visit count 𝑁 𝑡

ℎ(𝑠, 𝑎) that the learner was encouraged to explore.

It turns out that UCBVI achieves a regret of

Theorem 10.2 (UCBVI regret). The expected regret of UCBVI satisfies

𝔼 [
𝑇 −1
∑
𝑡=0

(𝑉 ⋆
0 (𝑠0) − 𝑉 𝜋𝑡

0 (𝑠0))] = 𝑂(𝐻2√|𝒮||𝒜|𝐼)

Comparing this to the UCB regret bound 𝑂(
√

𝑇 𝐾), where 𝐾 is the number of arms of the
MAB, we see that we’ve reduced the number of effective arms from |𝒜||𝒮|𝐻 (in eq. 10.3) to
𝐻4|𝒮||𝒜|, which is indeed polynomial in |𝒮|, |𝒜|, and 𝐻, as desired. This is also roughly the
number of episodes it takes to achieve constant-order average regret:

1
𝑇 𝔼[Regret𝑇 ] = 𝑂 (√𝐻4|𝒮||𝒜|

𝑇 )

Note that the time-dependent transition matrix has 𝐻|𝒮|2|𝒜| entries. Assuming 𝐻 ≪ |𝒮|, this
shows that it’s possible to achieve low regret, and achieve a near-optimal policy, while only
understanding a 1/|𝒮| fraction of the world’s dynamics.

10.5 Linear MDPs

A polynomial dependency on |𝒮| and |𝒜| is manageable when the state and action spaces are
small. But for large or continuous state and action spaces, even this polynomial factor will
become intractable. Can we find algorithms that don’t depend on |𝒮| or |𝒜| at all, effectively
reducing the dimensionality of the MDP? In this section, we’ll explore linear MDPs: an
example of a parameterized MDP where the rewards and state transitions depend only on
some parameter space of dimension 𝑑 that is independent from |𝒮| or |𝒜|.

Definition 10.4 (Linear MDP). We assume that the transition probabilities and rewards are
linear in some feature vector

𝜙(𝑠, 𝑎) ∈ ℝ𝑑:

𝑃ℎ(𝑠′ ∣ 𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝜇⋆
ℎ(𝑠′)

𝑟ℎ(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝜃⋆
ℎ
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Note that we can also think of 𝑃ℎ(⋅ ∣ 𝑠, 𝑎) = 𝜇⋆
ℎ as an |𝒮| × 𝑑 matrix, and think of 𝜇⋆

ℎ(𝑠′) as
indexing into the 𝑠′-th row of this matrix (treating it as a column vector). Thinking of 𝑉 ⋆

ℎ+1
as an |𝒮|-dimensional vector, this allows us to write

𝔼
𝑠′∼𝑃ℎ(⋅∣𝑠,𝑎)

[𝑉 ⋆
ℎ+1(𝑠)] = (𝜇⋆

ℎ𝜙(𝑠, 𝑎))⊤𝑉 ⋆
ℎ+1.

The 𝜙 feature mapping can be designed to capture interactions between the state 𝑠 and action
𝑎. In this book, we’ll assume that the feature map 𝜙 ∶ 𝒮 × 𝒜 → ℝ𝑑 and the reward function
(described by 𝜃⋆

ℎ) are known to the learner.

10.5.1 Planning in a linear MDP

It turns out that 𝑄⋆
ℎ is also linear with respect to this feature mapping. We can prove this by

simply computing it using DP. We initialize the value function at the end of the time horizon
by setting 𝑉 ⋆

𝐻(𝑠) = 0 for all states 𝑠. Then we iterate:

𝑄⋆
ℎ(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + 𝔼

𝑠′∼𝑃ℎ(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)]

= 𝜙(𝑠, 𝑎)⊤𝜃⋆
ℎ + (𝜇⋆

ℎ𝜙(𝑠, 𝑎))⊤𝑉 ⋆
ℎ+1

= 𝜙(𝑠, 𝑎)⊤ (𝜃⋆
ℎ + (𝜇⋆

ℎ)⊤𝑉 ⋆
ℎ+1)⏟⏟⏟⏟⏟⏟⏟

𝑤ℎ

𝑉 ⋆
ℎ (𝑠) = max

𝑎
𝑄⋆

ℎ(𝑠, 𝑎)
𝜋⋆

ℎ(𝑠) = arg max
𝑎

𝑄⋆
ℎ(𝑠, 𝑎)

Exercise 10.1 (Action-value function is linear in features). Show that 𝑄𝜋
ℎ is also linear with

respect to 𝜙(𝑠, 𝑎) for any policy 𝜋.

10.5.2 UCBVI in a linear MDP

10.5.2.1 Modeling the transitions

This linear assumption on the MDP will also allow us to model the unknown dynamics 𝑃 ?
ℎ(𝑠′ ∣

𝑠, 𝑎) with techniques from supervised learning (SL). Recall that SL is useful for estimating
conditional expectations by minimizing mean squared error. We can rephrase the estimation
of 𝑃 ?

ℎ(𝑠′ ∣ 𝑠, 𝑎) as a least-squares problem as follows: Write 𝛿𝑠 to denote a one-hot vector in
ℝ|𝒮|, with a 1 in the 𝑠-th entry and 0 everywhere else. Note that

𝔼
𝑠′∼𝑃ℎ(⋅∣𝑠,𝑎)

[𝛿𝑠′ ] = 𝑃ℎ(⋅ ∣ 𝑠, 𝑎) = 𝜇⋆
ℎ𝜙(𝑠, 𝑎).
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Furthermore, since the expectation here is linear with respect to 𝜙(𝑠, 𝑎), we can directly apply
least-squares multi-target linear regression to construct the estimate

̂𝜇 = arg min
𝜇∈ℝ|𝒮|×𝑑

𝑇 −1
∑
𝑡=0

‖𝜇𝜙(𝑠𝑖
ℎ, 𝑎𝑖

ℎ) − 𝛿𝑠𝑖
ℎ+1

‖2
2.

This has a well-known closed-form solution:

̂𝜇⊤ = (𝐴𝑡
ℎ)−1

𝑡−1
∑
𝑖=0

𝜙(𝑠𝑖
ℎ, 𝑎𝑖

ℎ)𝛿⊤
𝑠𝑖

ℎ+1

where 𝐴𝑡
ℎ =

𝑡−1
∑
𝑖=0

𝜙(𝑠𝑖
ℎ, 𝑎𝑖

ℎ)𝜙(𝑠𝑖
ℎ, 𝑎𝑖

ℎ)⊤ + 𝜆𝐼

where we include a 𝜆𝐼 term to ensure that the matrix 𝐴𝑡
ℎ is invertible. (This can also be

derived by adding a 𝜆‖𝜇‖2
F regularization term to the objective.) We can directly plug in this

estimate into 𝑃 𝑡
ℎ(⋅ ∣ 𝑠, 𝑎) = ̂𝜇𝑡

ℎ𝜙(𝑠, 𝑎).

10.5.2.2 Reward bonus

Now, to design the reward bonus, we can’t apply Hoeffding’s inequality anymore, since the
terms no longer involve sample means of bounded random variables; Instead, we’re incorporat-
ing information across different states and actions. Rather, we can construct an upper bound
using Chebyshev’s inequality in the same way we did for the LinUCB algorithm in the MAB
setting sec. 4.9.1:

𝑏𝑡
ℎ(𝑠, 𝑎) = 𝛽√𝜙(𝑠, 𝑎)⊤(𝐴𝑡

ℎ)−1𝜙(𝑠, 𝑎), 𝛽 = 𝑂(𝑑𝐻).

Note that this isn’t explicitly inversely proportional to 𝑁 𝑡
ℎ(𝑠, 𝑎) as in the original UCBVI bonus

term eq. 10.10. Rather, it is inversely proportional to the amount that the direction 𝜙(𝑠, 𝑎)
has been explored in the history. That is, if 𝐴 − ℎ𝑡 has a large component in the direction
𝜙(𝑠, 𝑎), implying that this direction is well explored, then the bonus term will be small, and
vice versa.

We can now plug in these transition estimates and reward bonuses into the UCBVI algorithm
def. 10.3.

Theorem 10.3 (LinUCBVI regret). The LinUCBVI algorithm achieves expected regret

𝔼[Regret𝑇 ] = 𝔼 [
𝑇 −1
∑
𝑡=0

𝑉 ⋆
0 (𝑠0) − 𝑉 𝜋𝑡

0 (𝑠0)] ≤ 𝑂(𝐻2𝑑1.5√
𝑇 )
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Comparing this to our bound for UCBVI in an environment without this linear assumption,
we see that we go from a sample complexity of Ω̃(𝐻4|𝒮||𝒜|) to Ω̃(𝐻4𝑑3). This new sample
complexity only depends on the feature dimension and not on the state or action space of the
MDP!

10.6 Key takeaways

We first discussed the explore-then-exploit algorithm (def. 10.1), a simple way to explore a
deterministic MDP by visiting all state-action pairs. This is essentially a graph traversal
algorithm, where each state represents an edge of the graph. We then discussed how to treat
an unknown MDP as a MAB (sec. 10.3), and how this approach is inefficient since it doesn’t
make use of correlations between different policies. We then introduced the UCBVI algorithm
(def. 10.3), the key algorithm of this chapter, which models the unknown MDP by a proxy
MDP with a reward bonus term that encourages exploration. Finally, assuming that the
transitions and rewards are linear with respect to a feature transformation of the state and
action, we introduced the LinUCBVI algorithm (sec. 10.5.2), which has a sample complexity
independent of the size of the state and action spaces. This makes it possible to scale up
UCBVI to large problems that have a simple underlying structure.

10.7 Bibliographic notes and further reading

Sparse reward problems are frequent throughout reinforcement learning. The chain MDP
example is from Thrun (1992). One of the most famous sparse reward problems is Mon-
tezuma’s Revenge, one of the tasks in the popular arcade learning environment (ALE)
benchmark of Atari 2600 games (Bellemare et al., 2013; Machado et al., 2018). These were
first solved by algorithms that explicitly encourage exploration (Bellemare et al., 2016; Burda
et al., 2018).

The issue of reward hacking is one of many possible concerns relating to AI safety. We refer
the reader to Amodei et al. (2016) for an overview of such risks. Reward hacking has been
empirically demonstrated in large language model training (Gao et al., 2023).

The UCBVI algorithm was first presented in Azar et al. (2017). UCBVI extends the UCB
algorithm from multi-armed bandits to the MDP by estimating a model of the environment.
Later work by Drago et al. (2025) improved the regret bound on UCBVI. Other model-based
methods for strategic exploration have been studied at least since Schmidhuber (1991) and
Meyer & Wilson (1991). UCBVI computes the reward bonus using the count of the number of
times that state-action pair has been visited. Tang et al. (2017) surveys other such count-based
exploration algorithms.
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It is also possible to encourage model-free algorithms to strategically explore. Badia et al.
(2020) designed a Q-learning algorithm with exploration incentives that surpassed the human
baseline on the challenging Atari tasks.

Intrinsic motivation is another family of approaches to strategic exploration. In some sense,
intrinsic motivation approaches are to RL as self-supervised approaches are to unsupervised
learning: typically, we add some intrinsic reward to the objective function that encourages the
policy to explore. See Schmidhuber (2010) and Aubret et al. (2019) for a recent survey on
this family of methods.

We refer the reader to the survey article Ladosz et al. (2022) for further reading on exploration
in RL.
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A Background

A.1 O notation

Throughout this chapter and the rest of the book, we will describe the asymptotic behaviour
of a function using 𝑂 notation.

For two functions 𝑓(𝑡) and 𝑔(𝑡), we say that 𝑓(𝑡) ≤ 𝑂(𝑔(𝑡)) if 𝑓 is asymptotically upper bounded
by 𝑔. Formally, this means that there exists some constant 𝐶 > 0 such that 𝑓(𝑡) ≤ 𝐶 ⋅ 𝑔(𝑡) for
all 𝑡 past some point 𝑡0.

We say 𝑓(𝑡) < 𝑜(𝑔(𝑡)) if asymptotically 𝑓 grows strictly slower than 𝑔. Formally, this means
that for any scalar 𝐶 > 0, there exists some 𝑡0 such that 𝑓(𝑡) ≤ 𝐶 ⋅ 𝑔(𝑡) for all 𝑡 > 𝑡0.
Equivalently, we say 𝑓(𝑡) < 𝑜(𝑔(𝑡)) if lim𝑡→∞ 𝑓(𝑡)/𝑔(𝑡) = 0.

𝑓(𝑡) = Θ(𝑔(𝑡)) means that 𝑓 and 𝑔 grow at the same rate asymptotically. That is, 𝑓(𝑡) ≤
𝑂(𝑔(𝑡)) and 𝑔(𝑡) ≤ 𝑂(𝑓(𝑡)).
Finally, we use 𝑓(𝑡) ≥ Ω(𝑔(𝑡)) to mean that 𝑔(𝑡) ≤ 𝑂(𝑓(𝑡)), and 𝑓(𝑡) > 𝜔(𝑔(𝑡)) to mean that
𝑔(𝑡) < 𝑜(𝑓(𝑡)).
We also use the notation 𝑂(𝑔(𝑡)) to hide logarithmic factors. That is, 𝑓(𝑡) = 𝑂(𝑔(𝑡)) if there
exists some constant 𝐶 such that 𝑓(𝑡) ≤ 𝐶 ⋅ 𝑔(𝑡) ⋅ log𝑘(𝑡) for some 𝑘 and all 𝑡.
Occasionally, we will also use 𝑂(𝑓(𝑡)) (or one of the other symbols) as shorthand to manipulate
function classes. For example, we might write 𝑂(𝑓(𝑡))+𝑂(𝑔(𝑡)) = 𝑂(𝑓(𝑡)+𝑔(𝑡)) to mean that
the sum of two functions in 𝑂(𝑓(𝑡)) and 𝑂(𝑔(𝑡)) is in 𝑂(𝑓(𝑡) + 𝑔(𝑡)).

A.2 Union bound

Theorem A.1 (Union bound). Consider a set of events 𝐴0, … , 𝐴𝑁−1. Then

ℙ (
𝑁−1
⋃
𝑛=0

𝐴𝑛) ≤
𝑁−1
∑
𝑛=0

ℙ(𝐴𝑛). (A.1)

In particular, if ℙ(𝐴𝑛) ≥ 1 − 𝛿 for each 𝑛 ∈ [𝑁], we have
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ℙ (
𝑁−1
⋂
𝑛=0

𝐴𝑛) ≥ 1 − 𝑁𝛿. (A.2)

In other words, if each event 𝐴𝑛 has a small probability 𝛿 of “failure”, then to get the probability
that there are any failures out of all 𝑁 events, we multiply the failure probability by 𝑁 .
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B Proofs

B.1 LQR proof

1. We’ll compute 𝑉 ⋆
𝐻 (at the end of the horizon) as our base case.

2. Then we’ll work step-by-step backwards in time, using 𝑉 ⋆
ℎ+1 to compute 𝑄⋆

ℎ, 𝜋⋆
ℎ, and 𝑉 ⋆

ℎ .

Base case:

At the final timestep, there are no possible actions to take, and so 𝑉 ⋆
𝐻(𝑥) = 𝑐(𝑥) = 𝑥⊤𝑄𝑥.

Thus 𝑉 ⋆
𝐻(𝑥) = 𝑥⊤𝑃𝐻𝑥 + 𝑝𝐻 where 𝑃𝐻 = 𝑄 and 𝑝𝐻 = 0.

Inductive hypothesis:

We seek to show that the inductive step holds for both theorems: If 𝑉 ⋆
ℎ+1(𝑥) is an upward-

curved quadratic, then 𝑉 ⋆
ℎ (𝑥) must also be an upward-curved quadratic, and 𝜋⋆

ℎ(𝑥) must be
linear. We’ll break this down into the following steps:

1. Show that 𝑄⋆
ℎ(𝑥, 𝑢) is an upward-curved quadratic (in both 𝑥 and 𝑢).

2. Derive the optimal policy 𝜋⋆
ℎ(𝑥) = arg min𝑢 𝑄⋆

ℎ(𝑥, 𝑢) and show that it’s linear.
3. Show that 𝑉 ⋆

ℎ (𝑥) is an upward-curved quadratic.

We first assume the inductive hypothesis that our theorems are true at time ℎ + 1. That is,

𝑉 ⋆
ℎ+1(𝑥) = 𝑥⊤𝑃ℎ+1𝑥 + 𝑝ℎ+1 ∀𝑥 ∈ 𝒮.

Lemma B.1 (𝑄⋆
ℎ(𝑥, 𝑢) is an upward-curved quadratic). Let us decompose 𝑄⋆

ℎ ∶ 𝒮 × 𝒜 → ℝ
into the immediate reward plus the expected cost-to-go:

𝑄⋆
ℎ(𝑥, 𝑢) = 𝑐(𝑥, 𝑢) + 𝔼

𝑥′∼𝑓(𝑥,𝑢,𝑤ℎ+1)
[𝑉 ⋆

ℎ+1(𝑥′)].

Recall 𝑐(𝑥, 𝑢) ∶= 𝑥⊤𝑄𝑥 + 𝑢⊤𝑅𝑢. Let’s consider the expectation over the next timestep. The
only randomness in the dynamics comes from the noise 𝑤ℎ+1 ∼ 𝒩(0, 𝜎2𝐼), so we can expand
the expectation as:
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𝔼
𝑥′

[𝑉 ⋆
ℎ+1(𝑥′)]

= 𝔼
𝑤ℎ+1

[𝑉 ⋆
ℎ+1(𝐴𝑥 + 𝐵𝑢 + 𝑤ℎ+1)] definition of 𝑓

= 𝔼
𝑤ℎ+1

[(𝐴𝑥 + 𝐵𝑢 + 𝑤ℎ+1)⊤𝑃ℎ+1(𝐴𝑥 + 𝐵𝑢 + 𝑤ℎ+1) + 𝑝ℎ+1]. inductive hypothesis

Summing and combining like terms, we get

𝑄⋆
ℎ(𝑥, 𝑢) = 𝑥⊤𝑄𝑥 + 𝑢⊤𝑅𝑢 + 𝔼

𝑤ℎ+1
[(𝐴𝑥 + 𝐵𝑢 + 𝑤ℎ+1)⊤𝑃ℎ+1(𝐴𝑥 + 𝐵𝑢 + 𝑤ℎ+1) + 𝑝ℎ+1]

= 𝑥⊤(𝑄 + 𝐴⊤𝑃ℎ+1𝐴)𝑥 + 𝑢⊤(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)𝑢 + 2𝑥⊤𝐴⊤𝑃ℎ+1𝐵𝑢
+ 𝔼

𝑤ℎ+1
[𝑤⊤

ℎ+1𝑃ℎ+1𝑤ℎ+1] + 𝑝ℎ+1.

Note that the terms that are linear in 𝑤ℎ have mean zero and vanish. Now consider the
remaining expectation over the noise. By expanding out the product and using linearity of
expectation, we can write this out as

𝔼
𝑤ℎ+1

[𝑤⊤
ℎ+1𝑃ℎ+1𝑤ℎ+1] =

𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

(𝑃ℎ+1)𝑖𝑗 𝔼
𝑤ℎ+1

[(𝑤ℎ+1)𝑖(𝑤ℎ+1)𝑗]

= 𝜎2Tr(𝑃ℎ+1)

B.1.0.1 Quadratic forms

When solving quadratic forms, i.e. expressions of the form 𝑥⊤𝐴𝑥, it’s often helpful to consider
the terms on the diagonal (𝑖 = 𝑗) separately from those off the diagonal.

In this case, the expectation of each diagonal term becomes

(𝑃ℎ+1)𝑖𝑖 𝔼(𝑤ℎ+1)2
𝑖 = 𝜎2(𝑃ℎ+1)𝑖𝑖. (B.1)

Off the diagonal, since the elements of 𝑤ℎ+1 are independent, the expectation factors, and since
each element has mean zero, the term vanishes:

(𝑃ℎ+1)𝑖𝑗 𝔼[(𝑤ℎ+1)𝑖] 𝔼[(𝑤ℎ+1)𝑗] = 0. (B.2)

Thus, the only terms left are the ones on the diagonal, so the sum of these can be expressed as
the trace of 𝜎2𝑃ℎ+1:
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𝔼
𝑤ℎ+1

[𝑤⊤
ℎ+1𝑃ℎ+1𝑤ℎ+1] = 𝜎2Tr(𝑃ℎ+1). (B.3)

Substituting this back into the expression for 𝑄⋆
ℎ, we have:

𝑄⋆
ℎ(𝑥, 𝑢) = 𝑥⊤(𝑄 + 𝐴⊤𝑃ℎ+1𝐴)𝑥 + 𝑢⊤(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)𝑢 + 2𝑥⊤𝐴⊤𝑃ℎ+1𝐵𝑢

+ 𝜎2Tr(𝑃ℎ+1) + 𝑝ℎ+1. (B.4)

As we hoped, this expression is quadratic in 𝑥 and 𝑢. Furthermore, we’d like to show that it
also curves upwards with respect to 𝑢 so that its minimum with respect to 𝑢 is well-defined.
We can do this by noting that the Hessian matrix of second derivatives is positive definite:

∇𝑢𝑢𝑄⋆
ℎ(𝑥, 𝑢) = 𝑅 + 𝐵⊤𝑃ℎ+1𝐵

Since 𝑅 is sym. p.d. (def. 3.5), and 𝑃ℎ+1 is sym. p.d. (by the inductive hypothesis), this sum
must also be sym. p.d., and so 𝑄⋆

ℎ is indeed an upward-curved quadratic with respect to 𝑢. (If
this isn’t clear, try proving it as an exercise.) The proof of its upward curvature with respect
to 𝑥 is equivalent.

Lemma B.2 (𝜋⋆
ℎ is linear). Since 𝑄⋆

ℎ is an upward-curved quadratic, finding its minimum
over 𝑢 is easy: we simply set the gradient with respect to 𝑢 equal to zero and solve for 𝑢. First,
we calculate the gradient:

∇𝑢𝑄⋆
ℎ(𝑥, 𝑢) = ∇𝑢[𝑢⊤(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)𝑢 + 2𝑥⊤𝐴⊤𝑃ℎ+1𝐵𝑢]

= 2(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)𝑢 + 2(𝑥⊤𝐴⊤𝑃ℎ+1𝐵)⊤

Setting this to zero, we get

0 = (𝑅 + 𝐵⊤𝑃ℎ+1𝐵)𝜋⋆
ℎ(𝑥) + 𝐵⊤𝑃ℎ+1𝐴𝑥

𝜋⋆
ℎ(𝑥) = (𝑅 + 𝐵⊤𝑃ℎ+1𝐵)−1(−𝐵⊤𝑃ℎ+1𝐴𝑥)

= −𝐾ℎ𝑥,

where

𝐾ℎ = (𝑅 + 𝐵⊤𝑃ℎ+1𝐵)−1𝐵⊤𝑃ℎ+1𝐴. (B.5)

Note that this optimal policy doesn’t depend on the starting distribution 𝜇0. It’s also fully
deterministic and isn’t affected by the noise terms 𝑤0, … , 𝑤𝐻−1.
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Lemma B.3 (The value function is an upward-curved quadratic). Using the identity 𝑉 ⋆
ℎ (𝑥) =

𝑄⋆
ℎ(𝑥, 𝜋⋆(𝑥)), we have:

𝑉 ⋆
ℎ (𝑥) = 𝑄⋆

ℎ(𝑥, 𝜋⋆(𝑥))
= 𝑥⊤(𝑄 + 𝐴⊤𝑃ℎ+1𝐴)𝑥 + (−𝐾ℎ𝑥)⊤(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)(−𝐾ℎ𝑥) + 2𝑥⊤𝐴⊤𝑃ℎ+1𝐵(−𝐾ℎ𝑥)

+ Tr(𝜎2𝑃ℎ+1) + 𝑝ℎ+1

Note that with respect to 𝑥, this is the sum of a quadratic term and a constant, which is exactly
what we were aiming for! The scalar term is clearly

𝑝ℎ = Tr(𝜎2𝑃ℎ+1) + 𝑝ℎ+1. (B.6)

We can simplify the quadratic term by substituting in 𝐾ℎ from eq. B.5. Notice that when we
do this, the (𝑅 + 𝐵⊤𝑃ℎ+1𝐵) term in the expression is cancelled out by its inverse, and the
remaining terms combine to give the Riccati equation:

𝑃ℎ = 𝑄 + 𝐴⊤𝑃ℎ+1𝐴 − 𝐴⊤𝑃ℎ+1𝐵(𝑅 + 𝐵⊤𝑃ℎ+1𝐵)−1𝐵⊤𝑃ℎ+1𝐴. (B.7)

It remains to prove that 𝑉 ⋆
ℎ curves upwards, that is, that 𝑃ℎ is sym. p.d. We will use the

following fact about Schur complements:

Lemma B.4 (Positive definiteness of Schur complements). Let

𝐷 = ( 𝐴 𝐵
𝐵⊤ 𝐶) (B.8)

be a symmetric (𝑚 + 𝑛) × (𝑚 + 𝑛) block matrix, where 𝐴 ∈ ℝ𝑚×𝑚, 𝐵 ∈ ℝ𝑚×𝑛, 𝐶 ∈ ℝ𝑛×𝑛. The
Schur complement of 𝐴 is denoted

𝐷/𝐴 = 𝐶 − 𝐵⊤𝐴−1𝐵. (B.9)

Schur complements have various uses in linear algebra and numerical computation.

A useful fact for us is that if 𝐴 is positive definite, then 𝐷 is positive semidefinite if and only
if 𝐷/𝐴 is positive semidefinite.
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Let 𝑃 denote 𝑃ℎ+1 for brevity. We already know 𝑄 is sym. p.d., so it suffices to show that

𝑆 = 𝑃 − 𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃 (B.10)

is p.s.d. (positive semidefinite), since left- and right- multiplying by 𝐴⊤ and 𝐴 respectively
preserves p.s.d. We note that 𝑆 is the Schur complement 𝐷/(𝑅 + 𝐵⊤𝑃𝐵), where

𝐷 = (𝑅 + 𝐵⊤𝑃𝐵 𝐵⊤𝑃
𝑃𝐵 𝑃 ) .

Thus we must show that 𝐷 is p.s.d.. This can be seen by computing

(𝑦⊤ 𝑧⊤) 𝐷 (𝑦
𝑧) = 𝑦⊤𝑅𝑦 + 𝑦⊤𝐵⊤𝑃𝐵𝑦 + 2𝑦⊤𝐵⊤𝑃𝑧 + 𝑧⊤𝑃𝑧

= 𝑦⊤𝑅𝑦 + (𝐵𝑦 + 𝑧)⊤𝑃(𝐵𝑦 + 𝑧)
> 0.

Since 𝑅 + 𝐵⊤𝑃 𝐵 is sym. p.d. and 𝐷 is p.s.d., then 𝑆 = 𝐷/(𝑅 + 𝐵⊤𝑃𝐵) must be p.s.d., and
𝑃ℎ = 𝑄 + 𝐴𝑆𝐴⊤ must be sym. p.d.

Now we’ve shown that 𝑉 ⋆
ℎ (𝑥) = 𝑥⊤𝑃ℎ𝑥 + 𝑝ℎ, where 𝑃ℎ is sym. p.d., proving the inductive

hypothesis and completing the proof of Theorem 3.3 and Theorem 3.2.

B.2 UCBVI reward bonus proof

We aim to show that, with high probability,

𝑉 ⋆
ℎ (𝑠) ≤ 𝑉 𝑡

ℎ(𝑠) ∀𝑡 ∈ [𝑇 ], ℎ ∈ [𝐻], 𝑠 ∈ 𝒮.

We’ll do this by bounding the error incurred at each step of DP. Recall that DP solves for
𝑉 𝑡

ℎ(𝑠) recursively as follows:

𝑉 𝑡
ℎ(𝑠) = max

𝑎∈𝒜
[ ̃𝑟𝑡

ℎ(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃 𝑡

ℎ(⋅∣𝑠,𝑎)
[𝑉 𝑡

ℎ+1(𝑠′)]]

where ̃𝑟𝑡
ℎ(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + 𝑏𝑡

ℎ(𝑠, 𝑎) is the reward function of our modelled MDP ℳ̃𝑡. On the
other hand, we know that 𝑉 ⋆ must satisfy
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𝑉 ⋆
ℎ (𝑠) = max

𝑎∈𝒜
[ ̃𝑟𝑡

ℎ(𝑠, 𝑎) + 𝔼
𝑠′∼𝑃 ?

ℎ(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)]]

so it suffices to bound the difference between the two inner expectations. There are two sources
of error:

1. The value functions 𝑉 𝑡
ℎ+1 v.s. 𝑉 ⋆

ℎ+1
2. The transition probabilities 𝑃 𝑡

ℎ v.s. 𝑃 ?
ℎ .

We can bound these individually, and then combine them by the triangle inequality. For the
former, we can simply bound the difference by 𝐻, assuming that the rewards are within [0, 1].
Now, all that is left is to bound the error from the transition probabilities:

error = ∣ 𝔼
𝑠′∼𝑃 𝑡

ℎ(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)] − 𝔼
𝑠′∼𝑃 ?

ℎ(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)] .∣ (B.11)

Let us bound this term for a fixed 𝑠, 𝑎, ℎ, 𝑡. (Later we can make this uniform across 𝑠, 𝑎, ℎ, 𝑡
using the union bound.) Note that expanding out the definition of 𝑃 𝑡

ℎ gives

𝔼
𝑠′∼𝑃 𝑡

ℎ(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)] = ∑
𝑠′∈𝒮

𝑁 𝑡
ℎ(𝑠, 𝑎, 𝑠′)
𝑁 𝑡

ℎ(𝑠, 𝑎) 𝑉 ⋆
ℎ+1(𝑠′)

= 1
𝑁 𝑡

ℎ(𝑠, 𝑎)
𝑡−1
∑
𝑖=0

∑
𝑠′∈𝒮

1 {(𝑠𝑖
ℎ, 𝑎𝑖

ℎ, 𝑠𝑖
ℎ+1) = (𝑠, 𝑎, 𝑠′)} 𝑉 ⋆

ℎ+1(𝑠′)

= 1
𝑁 𝑡

ℎ(𝑠, 𝑎)
𝑡−1
∑
𝑖=0

1 {(𝑠𝑖
ℎ, 𝑎𝑖

ℎ) = (𝑠, 𝑎)} 𝑉 ⋆
ℎ+1(𝑠𝑖

ℎ+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑋𝑖

since the terms where 𝑠′ ≠ 𝑠𝑖
ℎ+1 vanish.

Now, in order to apply Hoeffding’s inequality, we would like to express the second term in
eq. B.11 as a sum over 𝑡 random variables as well. We will do this by redundantly averaging
over all desired trajectories (i.e. where we visit state 𝑠 and action 𝑎 at time ℎ):

𝔼
𝑠′∼𝑃 ?

ℎ(⋅∣𝑠,𝑎)
[𝑉 ⋆

ℎ+1(𝑠′)] = ∑
𝑠′∈𝒮

𝑃 ?
ℎ(𝑠′ ∣ 𝑠, 𝑎)𝑉 ⋆

ℎ+1(𝑠′)

= ∑
𝑠′∈𝒮

1
𝑁 𝑡

ℎ(𝑠, 𝑎)
𝑡−1
∑
𝑖=0

1 {(𝑠𝑖
ℎ, 𝑎𝑖

ℎ) = (𝑠, 𝑎)} 𝑃 ?
ℎ(𝑠′ ∣ 𝑠, 𝑎)𝑉 ⋆

ℎ+1(𝑠′)

= 1
𝑁 𝑡

ℎ(𝑠, 𝑎)
𝑡−1
∑
𝑖=0

𝔼
𝑠𝑖

ℎ+1∼𝑃 ?
ℎ(⋅∣𝑠𝑖

ℎ,𝑎𝑖
ℎ)

𝑋𝑖.
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Now we can apply Hoeffding’s inequality to 𝑋𝑖 − 𝔼𝑠𝑖
ℎ+1∼𝑃 ?

ℎ(⋅∣𝑠𝑖
ℎ,𝑎𝑖

ℎ) 𝑋𝑖, which is bounded by 𝐻,
to obtain that, with probability at least 1 − 𝛿,

error = ∣ 1
𝑁 𝑡

ℎ(𝑠, 𝑎)
𝑡−1
∑
𝑖=0

(𝑋𝑖 − 𝔼
𝑠𝑖

ℎ+1∼𝑃 ?
ℎ(⋅∣𝑠𝑖

ℎ,𝑎𝑖
ℎ)

𝑋𝑖)∣ ≤ 2𝐻√ ln(1/𝛿)
𝑁 𝑡

ℎ(𝑠, 𝑎) .

Applying a union bound over all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜, 𝑡 ∈ [𝑇 ], ℎ ∈ [𝐻] gives the 𝑏𝑡
ℎ(𝑠, 𝑎) term above.
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